Step |
Hyp |
Ref |
Expression |
1 |
|
ltrelnq |
⊢ <Q ⊆ ( Q × Q ) |
2 |
1
|
brel |
⊢ ( 𝐴 <Q 𝐵 → ( 𝐴 ∈ Q ∧ 𝐵 ∈ Q ) ) |
3 |
1
|
brel |
⊢ ( ( *Q ‘ 𝐵 ) <Q ( *Q ‘ 𝐴 ) → ( ( *Q ‘ 𝐵 ) ∈ Q ∧ ( *Q ‘ 𝐴 ) ∈ Q ) ) |
4 |
|
dmrecnq |
⊢ dom *Q = Q |
5 |
|
0nnq |
⊢ ¬ ∅ ∈ Q |
6 |
4 5
|
ndmfvrcl |
⊢ ( ( *Q ‘ 𝐵 ) ∈ Q → 𝐵 ∈ Q ) |
7 |
4 5
|
ndmfvrcl |
⊢ ( ( *Q ‘ 𝐴 ) ∈ Q → 𝐴 ∈ Q ) |
8 |
6 7
|
anim12ci |
⊢ ( ( ( *Q ‘ 𝐵 ) ∈ Q ∧ ( *Q ‘ 𝐴 ) ∈ Q ) → ( 𝐴 ∈ Q ∧ 𝐵 ∈ Q ) ) |
9 |
3 8
|
syl |
⊢ ( ( *Q ‘ 𝐵 ) <Q ( *Q ‘ 𝐴 ) → ( 𝐴 ∈ Q ∧ 𝐵 ∈ Q ) ) |
10 |
|
breq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 <Q 𝑦 ↔ 𝐴 <Q 𝑦 ) ) |
11 |
|
fveq2 |
⊢ ( 𝑥 = 𝐴 → ( *Q ‘ 𝑥 ) = ( *Q ‘ 𝐴 ) ) |
12 |
11
|
breq2d |
⊢ ( 𝑥 = 𝐴 → ( ( *Q ‘ 𝑦 ) <Q ( *Q ‘ 𝑥 ) ↔ ( *Q ‘ 𝑦 ) <Q ( *Q ‘ 𝐴 ) ) ) |
13 |
10 12
|
bibi12d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝑥 <Q 𝑦 ↔ ( *Q ‘ 𝑦 ) <Q ( *Q ‘ 𝑥 ) ) ↔ ( 𝐴 <Q 𝑦 ↔ ( *Q ‘ 𝑦 ) <Q ( *Q ‘ 𝐴 ) ) ) ) |
14 |
|
breq2 |
⊢ ( 𝑦 = 𝐵 → ( 𝐴 <Q 𝑦 ↔ 𝐴 <Q 𝐵 ) ) |
15 |
|
fveq2 |
⊢ ( 𝑦 = 𝐵 → ( *Q ‘ 𝑦 ) = ( *Q ‘ 𝐵 ) ) |
16 |
15
|
breq1d |
⊢ ( 𝑦 = 𝐵 → ( ( *Q ‘ 𝑦 ) <Q ( *Q ‘ 𝐴 ) ↔ ( *Q ‘ 𝐵 ) <Q ( *Q ‘ 𝐴 ) ) ) |
17 |
14 16
|
bibi12d |
⊢ ( 𝑦 = 𝐵 → ( ( 𝐴 <Q 𝑦 ↔ ( *Q ‘ 𝑦 ) <Q ( *Q ‘ 𝐴 ) ) ↔ ( 𝐴 <Q 𝐵 ↔ ( *Q ‘ 𝐵 ) <Q ( *Q ‘ 𝐴 ) ) ) ) |
18 |
|
recclnq |
⊢ ( 𝑥 ∈ Q → ( *Q ‘ 𝑥 ) ∈ Q ) |
19 |
|
recclnq |
⊢ ( 𝑦 ∈ Q → ( *Q ‘ 𝑦 ) ∈ Q ) |
20 |
|
mulclnq |
⊢ ( ( ( *Q ‘ 𝑥 ) ∈ Q ∧ ( *Q ‘ 𝑦 ) ∈ Q ) → ( ( *Q ‘ 𝑥 ) ·Q ( *Q ‘ 𝑦 ) ) ∈ Q ) |
21 |
18 19 20
|
syl2an |
⊢ ( ( 𝑥 ∈ Q ∧ 𝑦 ∈ Q ) → ( ( *Q ‘ 𝑥 ) ·Q ( *Q ‘ 𝑦 ) ) ∈ Q ) |
22 |
|
ltmnq |
⊢ ( ( ( *Q ‘ 𝑥 ) ·Q ( *Q ‘ 𝑦 ) ) ∈ Q → ( 𝑥 <Q 𝑦 ↔ ( ( ( *Q ‘ 𝑥 ) ·Q ( *Q ‘ 𝑦 ) ) ·Q 𝑥 ) <Q ( ( ( *Q ‘ 𝑥 ) ·Q ( *Q ‘ 𝑦 ) ) ·Q 𝑦 ) ) ) |
23 |
21 22
|
syl |
⊢ ( ( 𝑥 ∈ Q ∧ 𝑦 ∈ Q ) → ( 𝑥 <Q 𝑦 ↔ ( ( ( *Q ‘ 𝑥 ) ·Q ( *Q ‘ 𝑦 ) ) ·Q 𝑥 ) <Q ( ( ( *Q ‘ 𝑥 ) ·Q ( *Q ‘ 𝑦 ) ) ·Q 𝑦 ) ) ) |
24 |
|
mulcomnq |
⊢ ( ( ( *Q ‘ 𝑥 ) ·Q ( *Q ‘ 𝑦 ) ) ·Q 𝑥 ) = ( 𝑥 ·Q ( ( *Q ‘ 𝑥 ) ·Q ( *Q ‘ 𝑦 ) ) ) |
25 |
|
mulassnq |
⊢ ( ( 𝑥 ·Q ( *Q ‘ 𝑥 ) ) ·Q ( *Q ‘ 𝑦 ) ) = ( 𝑥 ·Q ( ( *Q ‘ 𝑥 ) ·Q ( *Q ‘ 𝑦 ) ) ) |
26 |
|
mulcomnq |
⊢ ( ( 𝑥 ·Q ( *Q ‘ 𝑥 ) ) ·Q ( *Q ‘ 𝑦 ) ) = ( ( *Q ‘ 𝑦 ) ·Q ( 𝑥 ·Q ( *Q ‘ 𝑥 ) ) ) |
27 |
24 25 26
|
3eqtr2i |
⊢ ( ( ( *Q ‘ 𝑥 ) ·Q ( *Q ‘ 𝑦 ) ) ·Q 𝑥 ) = ( ( *Q ‘ 𝑦 ) ·Q ( 𝑥 ·Q ( *Q ‘ 𝑥 ) ) ) |
28 |
|
recidnq |
⊢ ( 𝑥 ∈ Q → ( 𝑥 ·Q ( *Q ‘ 𝑥 ) ) = 1Q ) |
29 |
28
|
oveq2d |
⊢ ( 𝑥 ∈ Q → ( ( *Q ‘ 𝑦 ) ·Q ( 𝑥 ·Q ( *Q ‘ 𝑥 ) ) ) = ( ( *Q ‘ 𝑦 ) ·Q 1Q ) ) |
30 |
|
mulidnq |
⊢ ( ( *Q ‘ 𝑦 ) ∈ Q → ( ( *Q ‘ 𝑦 ) ·Q 1Q ) = ( *Q ‘ 𝑦 ) ) |
31 |
19 30
|
syl |
⊢ ( 𝑦 ∈ Q → ( ( *Q ‘ 𝑦 ) ·Q 1Q ) = ( *Q ‘ 𝑦 ) ) |
32 |
29 31
|
sylan9eq |
⊢ ( ( 𝑥 ∈ Q ∧ 𝑦 ∈ Q ) → ( ( *Q ‘ 𝑦 ) ·Q ( 𝑥 ·Q ( *Q ‘ 𝑥 ) ) ) = ( *Q ‘ 𝑦 ) ) |
33 |
27 32
|
eqtrid |
⊢ ( ( 𝑥 ∈ Q ∧ 𝑦 ∈ Q ) → ( ( ( *Q ‘ 𝑥 ) ·Q ( *Q ‘ 𝑦 ) ) ·Q 𝑥 ) = ( *Q ‘ 𝑦 ) ) |
34 |
|
mulassnq |
⊢ ( ( ( *Q ‘ 𝑥 ) ·Q ( *Q ‘ 𝑦 ) ) ·Q 𝑦 ) = ( ( *Q ‘ 𝑥 ) ·Q ( ( *Q ‘ 𝑦 ) ·Q 𝑦 ) ) |
35 |
|
mulcomnq |
⊢ ( ( *Q ‘ 𝑦 ) ·Q 𝑦 ) = ( 𝑦 ·Q ( *Q ‘ 𝑦 ) ) |
36 |
35
|
oveq2i |
⊢ ( ( *Q ‘ 𝑥 ) ·Q ( ( *Q ‘ 𝑦 ) ·Q 𝑦 ) ) = ( ( *Q ‘ 𝑥 ) ·Q ( 𝑦 ·Q ( *Q ‘ 𝑦 ) ) ) |
37 |
34 36
|
eqtri |
⊢ ( ( ( *Q ‘ 𝑥 ) ·Q ( *Q ‘ 𝑦 ) ) ·Q 𝑦 ) = ( ( *Q ‘ 𝑥 ) ·Q ( 𝑦 ·Q ( *Q ‘ 𝑦 ) ) ) |
38 |
|
recidnq |
⊢ ( 𝑦 ∈ Q → ( 𝑦 ·Q ( *Q ‘ 𝑦 ) ) = 1Q ) |
39 |
38
|
oveq2d |
⊢ ( 𝑦 ∈ Q → ( ( *Q ‘ 𝑥 ) ·Q ( 𝑦 ·Q ( *Q ‘ 𝑦 ) ) ) = ( ( *Q ‘ 𝑥 ) ·Q 1Q ) ) |
40 |
|
mulidnq |
⊢ ( ( *Q ‘ 𝑥 ) ∈ Q → ( ( *Q ‘ 𝑥 ) ·Q 1Q ) = ( *Q ‘ 𝑥 ) ) |
41 |
18 40
|
syl |
⊢ ( 𝑥 ∈ Q → ( ( *Q ‘ 𝑥 ) ·Q 1Q ) = ( *Q ‘ 𝑥 ) ) |
42 |
39 41
|
sylan9eqr |
⊢ ( ( 𝑥 ∈ Q ∧ 𝑦 ∈ Q ) → ( ( *Q ‘ 𝑥 ) ·Q ( 𝑦 ·Q ( *Q ‘ 𝑦 ) ) ) = ( *Q ‘ 𝑥 ) ) |
43 |
37 42
|
eqtrid |
⊢ ( ( 𝑥 ∈ Q ∧ 𝑦 ∈ Q ) → ( ( ( *Q ‘ 𝑥 ) ·Q ( *Q ‘ 𝑦 ) ) ·Q 𝑦 ) = ( *Q ‘ 𝑥 ) ) |
44 |
33 43
|
breq12d |
⊢ ( ( 𝑥 ∈ Q ∧ 𝑦 ∈ Q ) → ( ( ( ( *Q ‘ 𝑥 ) ·Q ( *Q ‘ 𝑦 ) ) ·Q 𝑥 ) <Q ( ( ( *Q ‘ 𝑥 ) ·Q ( *Q ‘ 𝑦 ) ) ·Q 𝑦 ) ↔ ( *Q ‘ 𝑦 ) <Q ( *Q ‘ 𝑥 ) ) ) |
45 |
23 44
|
bitrd |
⊢ ( ( 𝑥 ∈ Q ∧ 𝑦 ∈ Q ) → ( 𝑥 <Q 𝑦 ↔ ( *Q ‘ 𝑦 ) <Q ( *Q ‘ 𝑥 ) ) ) |
46 |
13 17 45
|
vtocl2ga |
⊢ ( ( 𝐴 ∈ Q ∧ 𝐵 ∈ Q ) → ( 𝐴 <Q 𝐵 ↔ ( *Q ‘ 𝐵 ) <Q ( *Q ‘ 𝐴 ) ) ) |
47 |
2 9 46
|
pm5.21nii |
⊢ ( 𝐴 <Q 𝐵 ↔ ( *Q ‘ 𝐵 ) <Q ( *Q ‘ 𝐴 ) ) |