Database
REAL AND COMPLEX NUMBERS
Construction and axiomatization of real and complex numbers
Dedekind-cut construction of real and complex numbers
ltsopi
Metamath Proof Explorer
Description: Positive integer 'less than' is a strict ordering. (Contributed by NM , 8-Feb-1996) (Proof shortened by Mario Carneiro , 10-Jul-2014)
(New usage is discouraged.)
Ref
Expression
Assertion
ltsopi
⊢ <N Or N
Proof
Step
Hyp
Ref
Expression
1
df-ni
⊢ N = ( ω ∖ { ∅ } )
2
difss
⊢ ( ω ∖ { ∅ } ) ⊆ ω
3
omsson
⊢ ω ⊆ On
4
2 3
sstri
⊢ ( ω ∖ { ∅ } ) ⊆ On
5
1 4
eqsstri
⊢ N ⊆ On
6
epweon
⊢ E We On
7
weso
⊢ ( E We On → E Or On )
8
6 7
ax-mp
⊢ E Or On
9
soss
⊢ ( N ⊆ On → ( E Or On → E Or N ) )
10
5 8 9
mp2
⊢ E Or N
11
df-lti
⊢ <N = ( E ∩ ( N × N ) )
12
soeq1
⊢ ( <N = ( E ∩ ( N × N ) ) → ( <N Or N ↔ ( E ∩ ( N × N ) ) Or N ) )
13
11 12
ax-mp
⊢ ( <N Or N ↔ ( E ∩ ( N × N ) ) Or N )
14
soinxp
⊢ ( E Or N ↔ ( E ∩ ( N × N ) ) Or N )
15
13 14
bitr4i
⊢ ( <N Or N ↔ E Or N )
16
10 15
mpbir
⊢ <N Or N