Metamath Proof Explorer


Theorem ltsopr

Description: Positive real 'less than' is a strict ordering. Part of Proposition 9-3.3 of Gleason p. 122. (Contributed by NM, 25-Feb-1996) (New usage is discouraged.)

Ref Expression
Assertion ltsopr <P Or P

Proof

Step Hyp Ref Expression
1 pssirr ¬ 𝑥𝑥
2 ltprord ( ( 𝑥P𝑥P ) → ( 𝑥 <P 𝑥𝑥𝑥 ) )
3 1 2 mtbiri ( ( 𝑥P𝑥P ) → ¬ 𝑥 <P 𝑥 )
4 3 anidms ( 𝑥P → ¬ 𝑥 <P 𝑥 )
5 psstr ( ( 𝑥𝑦𝑦𝑧 ) → 𝑥𝑧 )
6 ltprord ( ( 𝑥P𝑦P ) → ( 𝑥 <P 𝑦𝑥𝑦 ) )
7 6 3adant3 ( ( 𝑥P𝑦P𝑧P ) → ( 𝑥 <P 𝑦𝑥𝑦 ) )
8 ltprord ( ( 𝑦P𝑧P ) → ( 𝑦 <P 𝑧𝑦𝑧 ) )
9 8 3adant1 ( ( 𝑥P𝑦P𝑧P ) → ( 𝑦 <P 𝑧𝑦𝑧 ) )
10 7 9 anbi12d ( ( 𝑥P𝑦P𝑧P ) → ( ( 𝑥 <P 𝑦𝑦 <P 𝑧 ) ↔ ( 𝑥𝑦𝑦𝑧 ) ) )
11 ltprord ( ( 𝑥P𝑧P ) → ( 𝑥 <P 𝑧𝑥𝑧 ) )
12 11 3adant2 ( ( 𝑥P𝑦P𝑧P ) → ( 𝑥 <P 𝑧𝑥𝑧 ) )
13 10 12 imbi12d ( ( 𝑥P𝑦P𝑧P ) → ( ( ( 𝑥 <P 𝑦𝑦 <P 𝑧 ) → 𝑥 <P 𝑧 ) ↔ ( ( 𝑥𝑦𝑦𝑧 ) → 𝑥𝑧 ) ) )
14 5 13 mpbiri ( ( 𝑥P𝑦P𝑧P ) → ( ( 𝑥 <P 𝑦𝑦 <P 𝑧 ) → 𝑥 <P 𝑧 ) )
15 psslinpr ( ( 𝑥P𝑦P ) → ( 𝑥𝑦𝑥 = 𝑦𝑦𝑥 ) )
16 biidd ( ( 𝑥P𝑦P ) → ( 𝑥 = 𝑦𝑥 = 𝑦 ) )
17 ltprord ( ( 𝑦P𝑥P ) → ( 𝑦 <P 𝑥𝑦𝑥 ) )
18 17 ancoms ( ( 𝑥P𝑦P ) → ( 𝑦 <P 𝑥𝑦𝑥 ) )
19 6 16 18 3orbi123d ( ( 𝑥P𝑦P ) → ( ( 𝑥 <P 𝑦𝑥 = 𝑦𝑦 <P 𝑥 ) ↔ ( 𝑥𝑦𝑥 = 𝑦𝑦𝑥 ) ) )
20 15 19 mpbird ( ( 𝑥P𝑦P ) → ( 𝑥 <P 𝑦𝑥 = 𝑦𝑦 <P 𝑥 ) )
21 4 14 20 issoi <P Or P