Step |
Hyp |
Ref |
Expression |
1 |
|
pssirr |
⊢ ¬ 𝑥 ⊊ 𝑥 |
2 |
|
ltprord |
⊢ ( ( 𝑥 ∈ P ∧ 𝑥 ∈ P ) → ( 𝑥 <P 𝑥 ↔ 𝑥 ⊊ 𝑥 ) ) |
3 |
1 2
|
mtbiri |
⊢ ( ( 𝑥 ∈ P ∧ 𝑥 ∈ P ) → ¬ 𝑥 <P 𝑥 ) |
4 |
3
|
anidms |
⊢ ( 𝑥 ∈ P → ¬ 𝑥 <P 𝑥 ) |
5 |
|
psstr |
⊢ ( ( 𝑥 ⊊ 𝑦 ∧ 𝑦 ⊊ 𝑧 ) → 𝑥 ⊊ 𝑧 ) |
6 |
|
ltprord |
⊢ ( ( 𝑥 ∈ P ∧ 𝑦 ∈ P ) → ( 𝑥 <P 𝑦 ↔ 𝑥 ⊊ 𝑦 ) ) |
7 |
6
|
3adant3 |
⊢ ( ( 𝑥 ∈ P ∧ 𝑦 ∈ P ∧ 𝑧 ∈ P ) → ( 𝑥 <P 𝑦 ↔ 𝑥 ⊊ 𝑦 ) ) |
8 |
|
ltprord |
⊢ ( ( 𝑦 ∈ P ∧ 𝑧 ∈ P ) → ( 𝑦 <P 𝑧 ↔ 𝑦 ⊊ 𝑧 ) ) |
9 |
8
|
3adant1 |
⊢ ( ( 𝑥 ∈ P ∧ 𝑦 ∈ P ∧ 𝑧 ∈ P ) → ( 𝑦 <P 𝑧 ↔ 𝑦 ⊊ 𝑧 ) ) |
10 |
7 9
|
anbi12d |
⊢ ( ( 𝑥 ∈ P ∧ 𝑦 ∈ P ∧ 𝑧 ∈ P ) → ( ( 𝑥 <P 𝑦 ∧ 𝑦 <P 𝑧 ) ↔ ( 𝑥 ⊊ 𝑦 ∧ 𝑦 ⊊ 𝑧 ) ) ) |
11 |
|
ltprord |
⊢ ( ( 𝑥 ∈ P ∧ 𝑧 ∈ P ) → ( 𝑥 <P 𝑧 ↔ 𝑥 ⊊ 𝑧 ) ) |
12 |
11
|
3adant2 |
⊢ ( ( 𝑥 ∈ P ∧ 𝑦 ∈ P ∧ 𝑧 ∈ P ) → ( 𝑥 <P 𝑧 ↔ 𝑥 ⊊ 𝑧 ) ) |
13 |
10 12
|
imbi12d |
⊢ ( ( 𝑥 ∈ P ∧ 𝑦 ∈ P ∧ 𝑧 ∈ P ) → ( ( ( 𝑥 <P 𝑦 ∧ 𝑦 <P 𝑧 ) → 𝑥 <P 𝑧 ) ↔ ( ( 𝑥 ⊊ 𝑦 ∧ 𝑦 ⊊ 𝑧 ) → 𝑥 ⊊ 𝑧 ) ) ) |
14 |
5 13
|
mpbiri |
⊢ ( ( 𝑥 ∈ P ∧ 𝑦 ∈ P ∧ 𝑧 ∈ P ) → ( ( 𝑥 <P 𝑦 ∧ 𝑦 <P 𝑧 ) → 𝑥 <P 𝑧 ) ) |
15 |
|
psslinpr |
⊢ ( ( 𝑥 ∈ P ∧ 𝑦 ∈ P ) → ( 𝑥 ⊊ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ⊊ 𝑥 ) ) |
16 |
|
biidd |
⊢ ( ( 𝑥 ∈ P ∧ 𝑦 ∈ P ) → ( 𝑥 = 𝑦 ↔ 𝑥 = 𝑦 ) ) |
17 |
|
ltprord |
⊢ ( ( 𝑦 ∈ P ∧ 𝑥 ∈ P ) → ( 𝑦 <P 𝑥 ↔ 𝑦 ⊊ 𝑥 ) ) |
18 |
17
|
ancoms |
⊢ ( ( 𝑥 ∈ P ∧ 𝑦 ∈ P ) → ( 𝑦 <P 𝑥 ↔ 𝑦 ⊊ 𝑥 ) ) |
19 |
6 16 18
|
3orbi123d |
⊢ ( ( 𝑥 ∈ P ∧ 𝑦 ∈ P ) → ( ( 𝑥 <P 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 <P 𝑥 ) ↔ ( 𝑥 ⊊ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ⊊ 𝑥 ) ) ) |
20 |
15 19
|
mpbird |
⊢ ( ( 𝑥 ∈ P ∧ 𝑦 ∈ P ) → ( 𝑥 <P 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 <P 𝑥 ) ) |
21 |
4 14 20
|
issoi |
⊢ <P Or P |