Metamath Proof Explorer


Theorem ltsrpr

Description: Ordering of signed reals in terms of positive reals. (Contributed by NM, 20-Feb-1996) (Revised by Mario Carneiro, 12-Aug-2015) (New usage is discouraged.)

Ref Expression
Assertion ltsrpr ( [ ⟨ 𝐴 , 𝐵 ⟩ ] ~R <R [ ⟨ 𝐶 , 𝐷 ⟩ ] ~R ↔ ( 𝐴 +P 𝐷 ) <P ( 𝐵 +P 𝐶 ) )

Proof

Step Hyp Ref Expression
1 enrer ~R Er ( P × P )
2 erdm ( ~R Er ( P × P ) → dom ~R = ( P × P ) )
3 1 2 ax-mp dom ~R = ( P × P )
4 df-nr R = ( ( P × P ) / ~R )
5 ltrelsr <R ⊆ ( R × R )
6 ltrelpr <P ⊆ ( P × P )
7 0npr ¬ ∅ ∈ P
8 dmplp dom +P = ( P × P )
9 enrex ~R ∈ V
10 df-ltr <R = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( ( 𝑥R𝑦R ) ∧ ∃ 𝑧𝑤𝑣𝑢 ( ( 𝑥 = [ ⟨ 𝑧 , 𝑤 ⟩ ] ~R𝑦 = [ ⟨ 𝑣 , 𝑢 ⟩ ] ~R ) ∧ ( 𝑧 +P 𝑢 ) <P ( 𝑤 +P 𝑣 ) ) ) }
11 addclpr ( ( 𝑤P𝑣P ) → ( 𝑤 +P 𝑣 ) ∈ P )
12 11 ad2ant2lr ( ( ( 𝑧P𝑤P ) ∧ ( 𝑣P𝑢P ) ) → ( 𝑤 +P 𝑣 ) ∈ P )
13 addclpr ( ( 𝐵P𝐶P ) → ( 𝐵 +P 𝐶 ) ∈ P )
14 13 ad2ant2lr ( ( ( 𝐴P𝐵P ) ∧ ( 𝐶P𝐷P ) ) → ( 𝐵 +P 𝐶 ) ∈ P )
15 12 14 anim12ci ( ( ( ( 𝑧P𝑤P ) ∧ ( 𝑣P𝑢P ) ) ∧ ( ( 𝐴P𝐵P ) ∧ ( 𝐶P𝐷P ) ) ) → ( ( 𝐵 +P 𝐶 ) ∈ P ∧ ( 𝑤 +P 𝑣 ) ∈ P ) )
16 15 an4s ( ( ( ( 𝑧P𝑤P ) ∧ ( 𝐴P𝐵P ) ) ∧ ( ( 𝑣P𝑢P ) ∧ ( 𝐶P𝐷P ) ) ) → ( ( 𝐵 +P 𝐶 ) ∈ P ∧ ( 𝑤 +P 𝑣 ) ∈ P ) )
17 enreceq ( ( ( 𝑧P𝑤P ) ∧ ( 𝐴P𝐵P ) ) → ( [ ⟨ 𝑧 , 𝑤 ⟩ ] ~R = [ ⟨ 𝐴 , 𝐵 ⟩ ] ~R ↔ ( 𝑧 +P 𝐵 ) = ( 𝑤 +P 𝐴 ) ) )
18 enreceq ( ( ( 𝑣P𝑢P ) ∧ ( 𝐶P𝐷P ) ) → ( [ ⟨ 𝑣 , 𝑢 ⟩ ] ~R = [ ⟨ 𝐶 , 𝐷 ⟩ ] ~R ↔ ( 𝑣 +P 𝐷 ) = ( 𝑢 +P 𝐶 ) ) )
19 eqcom ( ( 𝑣 +P 𝐷 ) = ( 𝑢 +P 𝐶 ) ↔ ( 𝑢 +P 𝐶 ) = ( 𝑣 +P 𝐷 ) )
20 18 19 bitrdi ( ( ( 𝑣P𝑢P ) ∧ ( 𝐶P𝐷P ) ) → ( [ ⟨ 𝑣 , 𝑢 ⟩ ] ~R = [ ⟨ 𝐶 , 𝐷 ⟩ ] ~R ↔ ( 𝑢 +P 𝐶 ) = ( 𝑣 +P 𝐷 ) ) )
21 17 20 bi2anan9 ( ( ( ( 𝑧P𝑤P ) ∧ ( 𝐴P𝐵P ) ) ∧ ( ( 𝑣P𝑢P ) ∧ ( 𝐶P𝐷P ) ) ) → ( ( [ ⟨ 𝑧 , 𝑤 ⟩ ] ~R = [ ⟨ 𝐴 , 𝐵 ⟩ ] ~R ∧ [ ⟨ 𝑣 , 𝑢 ⟩ ] ~R = [ ⟨ 𝐶 , 𝐷 ⟩ ] ~R ) ↔ ( ( 𝑧 +P 𝐵 ) = ( 𝑤 +P 𝐴 ) ∧ ( 𝑢 +P 𝐶 ) = ( 𝑣 +P 𝐷 ) ) ) )
22 oveq12 ( ( ( 𝑧 +P 𝐵 ) = ( 𝑤 +P 𝐴 ) ∧ ( 𝑢 +P 𝐶 ) = ( 𝑣 +P 𝐷 ) ) → ( ( 𝑧 +P 𝐵 ) +P ( 𝑢 +P 𝐶 ) ) = ( ( 𝑤 +P 𝐴 ) +P ( 𝑣 +P 𝐷 ) ) )
23 addcompr ( 𝑢 +P 𝐵 ) = ( 𝐵 +P 𝑢 )
24 23 oveq1i ( ( 𝑢 +P 𝐵 ) +P 𝐶 ) = ( ( 𝐵 +P 𝑢 ) +P 𝐶 )
25 addasspr ( ( 𝑢 +P 𝐵 ) +P 𝐶 ) = ( 𝑢 +P ( 𝐵 +P 𝐶 ) )
26 addasspr ( ( 𝐵 +P 𝑢 ) +P 𝐶 ) = ( 𝐵 +P ( 𝑢 +P 𝐶 ) )
27 24 25 26 3eqtr3i ( 𝑢 +P ( 𝐵 +P 𝐶 ) ) = ( 𝐵 +P ( 𝑢 +P 𝐶 ) )
28 27 oveq2i ( 𝑧 +P ( 𝑢 +P ( 𝐵 +P 𝐶 ) ) ) = ( 𝑧 +P ( 𝐵 +P ( 𝑢 +P 𝐶 ) ) )
29 addasspr ( ( 𝑧 +P 𝑢 ) +P ( 𝐵 +P 𝐶 ) ) = ( 𝑧 +P ( 𝑢 +P ( 𝐵 +P 𝐶 ) ) )
30 addasspr ( ( 𝑧 +P 𝐵 ) +P ( 𝑢 +P 𝐶 ) ) = ( 𝑧 +P ( 𝐵 +P ( 𝑢 +P 𝐶 ) ) )
31 28 29 30 3eqtr4i ( ( 𝑧 +P 𝑢 ) +P ( 𝐵 +P 𝐶 ) ) = ( ( 𝑧 +P 𝐵 ) +P ( 𝑢 +P 𝐶 ) )
32 addcompr ( 𝑣 +P 𝐴 ) = ( 𝐴 +P 𝑣 )
33 32 oveq1i ( ( 𝑣 +P 𝐴 ) +P 𝐷 ) = ( ( 𝐴 +P 𝑣 ) +P 𝐷 )
34 addasspr ( ( 𝑣 +P 𝐴 ) +P 𝐷 ) = ( 𝑣 +P ( 𝐴 +P 𝐷 ) )
35 addasspr ( ( 𝐴 +P 𝑣 ) +P 𝐷 ) = ( 𝐴 +P ( 𝑣 +P 𝐷 ) )
36 33 34 35 3eqtr3i ( 𝑣 +P ( 𝐴 +P 𝐷 ) ) = ( 𝐴 +P ( 𝑣 +P 𝐷 ) )
37 36 oveq2i ( 𝑤 +P ( 𝑣 +P ( 𝐴 +P 𝐷 ) ) ) = ( 𝑤 +P ( 𝐴 +P ( 𝑣 +P 𝐷 ) ) )
38 addasspr ( ( 𝑤 +P 𝑣 ) +P ( 𝐴 +P 𝐷 ) ) = ( 𝑤 +P ( 𝑣 +P ( 𝐴 +P 𝐷 ) ) )
39 addasspr ( ( 𝑤 +P 𝐴 ) +P ( 𝑣 +P 𝐷 ) ) = ( 𝑤 +P ( 𝐴 +P ( 𝑣 +P 𝐷 ) ) )
40 37 38 39 3eqtr4i ( ( 𝑤 +P 𝑣 ) +P ( 𝐴 +P 𝐷 ) ) = ( ( 𝑤 +P 𝐴 ) +P ( 𝑣 +P 𝐷 ) )
41 22 31 40 3eqtr4g ( ( ( 𝑧 +P 𝐵 ) = ( 𝑤 +P 𝐴 ) ∧ ( 𝑢 +P 𝐶 ) = ( 𝑣 +P 𝐷 ) ) → ( ( 𝑧 +P 𝑢 ) +P ( 𝐵 +P 𝐶 ) ) = ( ( 𝑤 +P 𝑣 ) +P ( 𝐴 +P 𝐷 ) ) )
42 21 41 syl6bi ( ( ( ( 𝑧P𝑤P ) ∧ ( 𝐴P𝐵P ) ) ∧ ( ( 𝑣P𝑢P ) ∧ ( 𝐶P𝐷P ) ) ) → ( ( [ ⟨ 𝑧 , 𝑤 ⟩ ] ~R = [ ⟨ 𝐴 , 𝐵 ⟩ ] ~R ∧ [ ⟨ 𝑣 , 𝑢 ⟩ ] ~R = [ ⟨ 𝐶 , 𝐷 ⟩ ] ~R ) → ( ( 𝑧 +P 𝑢 ) +P ( 𝐵 +P 𝐶 ) ) = ( ( 𝑤 +P 𝑣 ) +P ( 𝐴 +P 𝐷 ) ) ) )
43 ovex ( 𝑧 +P 𝑢 ) ∈ V
44 ovex ( 𝐵 +P 𝐶 ) ∈ V
45 ltapr ( 𝑓P → ( 𝑥 <P 𝑦 ↔ ( 𝑓 +P 𝑥 ) <P ( 𝑓 +P 𝑦 ) ) )
46 ovex ( 𝑤 +P 𝑣 ) ∈ V
47 addcompr ( 𝑥 +P 𝑦 ) = ( 𝑦 +P 𝑥 )
48 ovex ( 𝐴 +P 𝐷 ) ∈ V
49 43 44 45 46 47 48 caovord3 ( ( ( ( 𝐵 +P 𝐶 ) ∈ P ∧ ( 𝑤 +P 𝑣 ) ∈ P ) ∧ ( ( 𝑧 +P 𝑢 ) +P ( 𝐵 +P 𝐶 ) ) = ( ( 𝑤 +P 𝑣 ) +P ( 𝐴 +P 𝐷 ) ) ) → ( ( 𝑧 +P 𝑢 ) <P ( 𝑤 +P 𝑣 ) ↔ ( 𝐴 +P 𝐷 ) <P ( 𝐵 +P 𝐶 ) ) )
50 16 42 49 syl6an ( ( ( ( 𝑧P𝑤P ) ∧ ( 𝐴P𝐵P ) ) ∧ ( ( 𝑣P𝑢P ) ∧ ( 𝐶P𝐷P ) ) ) → ( ( [ ⟨ 𝑧 , 𝑤 ⟩ ] ~R = [ ⟨ 𝐴 , 𝐵 ⟩ ] ~R ∧ [ ⟨ 𝑣 , 𝑢 ⟩ ] ~R = [ ⟨ 𝐶 , 𝐷 ⟩ ] ~R ) → ( ( 𝑧 +P 𝑢 ) <P ( 𝑤 +P 𝑣 ) ↔ ( 𝐴 +P 𝐷 ) <P ( 𝐵 +P 𝐶 ) ) ) )
51 9 1 4 10 50 brecop ( ( ( 𝐴P𝐵P ) ∧ ( 𝐶P𝐷P ) ) → ( [ ⟨ 𝐴 , 𝐵 ⟩ ] ~R <R [ ⟨ 𝐶 , 𝐷 ⟩ ] ~R ↔ ( 𝐴 +P 𝐷 ) <P ( 𝐵 +P 𝐶 ) ) )
52 3 4 5 6 7 8 51 brecop2 ( [ ⟨ 𝐴 , 𝐵 ⟩ ] ~R <R [ ⟨ 𝐶 , 𝐷 ⟩ ] ~R ↔ ( 𝐴 +P 𝐷 ) <P ( 𝐵 +P 𝐶 ) )