| Step |
Hyp |
Ref |
Expression |
| 1 |
|
enrer |
⊢ ~R Er ( P × P ) |
| 2 |
|
erdm |
⊢ ( ~R Er ( P × P ) → dom ~R = ( P × P ) ) |
| 3 |
1 2
|
ax-mp |
⊢ dom ~R = ( P × P ) |
| 4 |
|
df-nr |
⊢ R = ( ( P × P ) / ~R ) |
| 5 |
|
ltrelsr |
⊢ <R ⊆ ( R × R ) |
| 6 |
|
ltrelpr |
⊢ <P ⊆ ( P × P ) |
| 7 |
|
0npr |
⊢ ¬ ∅ ∈ P |
| 8 |
|
dmplp |
⊢ dom +P = ( P × P ) |
| 9 |
|
enrex |
⊢ ~R ∈ V |
| 10 |
|
df-ltr |
⊢ <R = { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ R ∧ 𝑦 ∈ R ) ∧ ∃ 𝑧 ∃ 𝑤 ∃ 𝑣 ∃ 𝑢 ( ( 𝑥 = [ 〈 𝑧 , 𝑤 〉 ] ~R ∧ 𝑦 = [ 〈 𝑣 , 𝑢 〉 ] ~R ) ∧ ( 𝑧 +P 𝑢 ) <P ( 𝑤 +P 𝑣 ) ) ) } |
| 11 |
|
addclpr |
⊢ ( ( 𝑤 ∈ P ∧ 𝑣 ∈ P ) → ( 𝑤 +P 𝑣 ) ∈ P ) |
| 12 |
11
|
ad2ant2lr |
⊢ ( ( ( 𝑧 ∈ P ∧ 𝑤 ∈ P ) ∧ ( 𝑣 ∈ P ∧ 𝑢 ∈ P ) ) → ( 𝑤 +P 𝑣 ) ∈ P ) |
| 13 |
|
addclpr |
⊢ ( ( 𝐵 ∈ P ∧ 𝐶 ∈ P ) → ( 𝐵 +P 𝐶 ) ∈ P ) |
| 14 |
13
|
ad2ant2lr |
⊢ ( ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) ∧ ( 𝐶 ∈ P ∧ 𝐷 ∈ P ) ) → ( 𝐵 +P 𝐶 ) ∈ P ) |
| 15 |
12 14
|
anim12ci |
⊢ ( ( ( ( 𝑧 ∈ P ∧ 𝑤 ∈ P ) ∧ ( 𝑣 ∈ P ∧ 𝑢 ∈ P ) ) ∧ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) ∧ ( 𝐶 ∈ P ∧ 𝐷 ∈ P ) ) ) → ( ( 𝐵 +P 𝐶 ) ∈ P ∧ ( 𝑤 +P 𝑣 ) ∈ P ) ) |
| 16 |
15
|
an4s |
⊢ ( ( ( ( 𝑧 ∈ P ∧ 𝑤 ∈ P ) ∧ ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) ) ∧ ( ( 𝑣 ∈ P ∧ 𝑢 ∈ P ) ∧ ( 𝐶 ∈ P ∧ 𝐷 ∈ P ) ) ) → ( ( 𝐵 +P 𝐶 ) ∈ P ∧ ( 𝑤 +P 𝑣 ) ∈ P ) ) |
| 17 |
|
enreceq |
⊢ ( ( ( 𝑧 ∈ P ∧ 𝑤 ∈ P ) ∧ ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) ) → ( [ 〈 𝑧 , 𝑤 〉 ] ~R = [ 〈 𝐴 , 𝐵 〉 ] ~R ↔ ( 𝑧 +P 𝐵 ) = ( 𝑤 +P 𝐴 ) ) ) |
| 18 |
|
enreceq |
⊢ ( ( ( 𝑣 ∈ P ∧ 𝑢 ∈ P ) ∧ ( 𝐶 ∈ P ∧ 𝐷 ∈ P ) ) → ( [ 〈 𝑣 , 𝑢 〉 ] ~R = [ 〈 𝐶 , 𝐷 〉 ] ~R ↔ ( 𝑣 +P 𝐷 ) = ( 𝑢 +P 𝐶 ) ) ) |
| 19 |
|
eqcom |
⊢ ( ( 𝑣 +P 𝐷 ) = ( 𝑢 +P 𝐶 ) ↔ ( 𝑢 +P 𝐶 ) = ( 𝑣 +P 𝐷 ) ) |
| 20 |
18 19
|
bitrdi |
⊢ ( ( ( 𝑣 ∈ P ∧ 𝑢 ∈ P ) ∧ ( 𝐶 ∈ P ∧ 𝐷 ∈ P ) ) → ( [ 〈 𝑣 , 𝑢 〉 ] ~R = [ 〈 𝐶 , 𝐷 〉 ] ~R ↔ ( 𝑢 +P 𝐶 ) = ( 𝑣 +P 𝐷 ) ) ) |
| 21 |
17 20
|
bi2anan9 |
⊢ ( ( ( ( 𝑧 ∈ P ∧ 𝑤 ∈ P ) ∧ ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) ) ∧ ( ( 𝑣 ∈ P ∧ 𝑢 ∈ P ) ∧ ( 𝐶 ∈ P ∧ 𝐷 ∈ P ) ) ) → ( ( [ 〈 𝑧 , 𝑤 〉 ] ~R = [ 〈 𝐴 , 𝐵 〉 ] ~R ∧ [ 〈 𝑣 , 𝑢 〉 ] ~R = [ 〈 𝐶 , 𝐷 〉 ] ~R ) ↔ ( ( 𝑧 +P 𝐵 ) = ( 𝑤 +P 𝐴 ) ∧ ( 𝑢 +P 𝐶 ) = ( 𝑣 +P 𝐷 ) ) ) ) |
| 22 |
|
oveq12 |
⊢ ( ( ( 𝑧 +P 𝐵 ) = ( 𝑤 +P 𝐴 ) ∧ ( 𝑢 +P 𝐶 ) = ( 𝑣 +P 𝐷 ) ) → ( ( 𝑧 +P 𝐵 ) +P ( 𝑢 +P 𝐶 ) ) = ( ( 𝑤 +P 𝐴 ) +P ( 𝑣 +P 𝐷 ) ) ) |
| 23 |
|
addcompr |
⊢ ( 𝑢 +P 𝐵 ) = ( 𝐵 +P 𝑢 ) |
| 24 |
23
|
oveq1i |
⊢ ( ( 𝑢 +P 𝐵 ) +P 𝐶 ) = ( ( 𝐵 +P 𝑢 ) +P 𝐶 ) |
| 25 |
|
addasspr |
⊢ ( ( 𝑢 +P 𝐵 ) +P 𝐶 ) = ( 𝑢 +P ( 𝐵 +P 𝐶 ) ) |
| 26 |
|
addasspr |
⊢ ( ( 𝐵 +P 𝑢 ) +P 𝐶 ) = ( 𝐵 +P ( 𝑢 +P 𝐶 ) ) |
| 27 |
24 25 26
|
3eqtr3i |
⊢ ( 𝑢 +P ( 𝐵 +P 𝐶 ) ) = ( 𝐵 +P ( 𝑢 +P 𝐶 ) ) |
| 28 |
27
|
oveq2i |
⊢ ( 𝑧 +P ( 𝑢 +P ( 𝐵 +P 𝐶 ) ) ) = ( 𝑧 +P ( 𝐵 +P ( 𝑢 +P 𝐶 ) ) ) |
| 29 |
|
addasspr |
⊢ ( ( 𝑧 +P 𝑢 ) +P ( 𝐵 +P 𝐶 ) ) = ( 𝑧 +P ( 𝑢 +P ( 𝐵 +P 𝐶 ) ) ) |
| 30 |
|
addasspr |
⊢ ( ( 𝑧 +P 𝐵 ) +P ( 𝑢 +P 𝐶 ) ) = ( 𝑧 +P ( 𝐵 +P ( 𝑢 +P 𝐶 ) ) ) |
| 31 |
28 29 30
|
3eqtr4i |
⊢ ( ( 𝑧 +P 𝑢 ) +P ( 𝐵 +P 𝐶 ) ) = ( ( 𝑧 +P 𝐵 ) +P ( 𝑢 +P 𝐶 ) ) |
| 32 |
|
addcompr |
⊢ ( 𝑣 +P 𝐴 ) = ( 𝐴 +P 𝑣 ) |
| 33 |
32
|
oveq1i |
⊢ ( ( 𝑣 +P 𝐴 ) +P 𝐷 ) = ( ( 𝐴 +P 𝑣 ) +P 𝐷 ) |
| 34 |
|
addasspr |
⊢ ( ( 𝑣 +P 𝐴 ) +P 𝐷 ) = ( 𝑣 +P ( 𝐴 +P 𝐷 ) ) |
| 35 |
|
addasspr |
⊢ ( ( 𝐴 +P 𝑣 ) +P 𝐷 ) = ( 𝐴 +P ( 𝑣 +P 𝐷 ) ) |
| 36 |
33 34 35
|
3eqtr3i |
⊢ ( 𝑣 +P ( 𝐴 +P 𝐷 ) ) = ( 𝐴 +P ( 𝑣 +P 𝐷 ) ) |
| 37 |
36
|
oveq2i |
⊢ ( 𝑤 +P ( 𝑣 +P ( 𝐴 +P 𝐷 ) ) ) = ( 𝑤 +P ( 𝐴 +P ( 𝑣 +P 𝐷 ) ) ) |
| 38 |
|
addasspr |
⊢ ( ( 𝑤 +P 𝑣 ) +P ( 𝐴 +P 𝐷 ) ) = ( 𝑤 +P ( 𝑣 +P ( 𝐴 +P 𝐷 ) ) ) |
| 39 |
|
addasspr |
⊢ ( ( 𝑤 +P 𝐴 ) +P ( 𝑣 +P 𝐷 ) ) = ( 𝑤 +P ( 𝐴 +P ( 𝑣 +P 𝐷 ) ) ) |
| 40 |
37 38 39
|
3eqtr4i |
⊢ ( ( 𝑤 +P 𝑣 ) +P ( 𝐴 +P 𝐷 ) ) = ( ( 𝑤 +P 𝐴 ) +P ( 𝑣 +P 𝐷 ) ) |
| 41 |
22 31 40
|
3eqtr4g |
⊢ ( ( ( 𝑧 +P 𝐵 ) = ( 𝑤 +P 𝐴 ) ∧ ( 𝑢 +P 𝐶 ) = ( 𝑣 +P 𝐷 ) ) → ( ( 𝑧 +P 𝑢 ) +P ( 𝐵 +P 𝐶 ) ) = ( ( 𝑤 +P 𝑣 ) +P ( 𝐴 +P 𝐷 ) ) ) |
| 42 |
21 41
|
biimtrdi |
⊢ ( ( ( ( 𝑧 ∈ P ∧ 𝑤 ∈ P ) ∧ ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) ) ∧ ( ( 𝑣 ∈ P ∧ 𝑢 ∈ P ) ∧ ( 𝐶 ∈ P ∧ 𝐷 ∈ P ) ) ) → ( ( [ 〈 𝑧 , 𝑤 〉 ] ~R = [ 〈 𝐴 , 𝐵 〉 ] ~R ∧ [ 〈 𝑣 , 𝑢 〉 ] ~R = [ 〈 𝐶 , 𝐷 〉 ] ~R ) → ( ( 𝑧 +P 𝑢 ) +P ( 𝐵 +P 𝐶 ) ) = ( ( 𝑤 +P 𝑣 ) +P ( 𝐴 +P 𝐷 ) ) ) ) |
| 43 |
|
ovex |
⊢ ( 𝑧 +P 𝑢 ) ∈ V |
| 44 |
|
ovex |
⊢ ( 𝐵 +P 𝐶 ) ∈ V |
| 45 |
|
ltapr |
⊢ ( 𝑓 ∈ P → ( 𝑥 <P 𝑦 ↔ ( 𝑓 +P 𝑥 ) <P ( 𝑓 +P 𝑦 ) ) ) |
| 46 |
|
ovex |
⊢ ( 𝑤 +P 𝑣 ) ∈ V |
| 47 |
|
addcompr |
⊢ ( 𝑥 +P 𝑦 ) = ( 𝑦 +P 𝑥 ) |
| 48 |
|
ovex |
⊢ ( 𝐴 +P 𝐷 ) ∈ V |
| 49 |
43 44 45 46 47 48
|
caovord3 |
⊢ ( ( ( ( 𝐵 +P 𝐶 ) ∈ P ∧ ( 𝑤 +P 𝑣 ) ∈ P ) ∧ ( ( 𝑧 +P 𝑢 ) +P ( 𝐵 +P 𝐶 ) ) = ( ( 𝑤 +P 𝑣 ) +P ( 𝐴 +P 𝐷 ) ) ) → ( ( 𝑧 +P 𝑢 ) <P ( 𝑤 +P 𝑣 ) ↔ ( 𝐴 +P 𝐷 ) <P ( 𝐵 +P 𝐶 ) ) ) |
| 50 |
16 42 49
|
syl6an |
⊢ ( ( ( ( 𝑧 ∈ P ∧ 𝑤 ∈ P ) ∧ ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) ) ∧ ( ( 𝑣 ∈ P ∧ 𝑢 ∈ P ) ∧ ( 𝐶 ∈ P ∧ 𝐷 ∈ P ) ) ) → ( ( [ 〈 𝑧 , 𝑤 〉 ] ~R = [ 〈 𝐴 , 𝐵 〉 ] ~R ∧ [ 〈 𝑣 , 𝑢 〉 ] ~R = [ 〈 𝐶 , 𝐷 〉 ] ~R ) → ( ( 𝑧 +P 𝑢 ) <P ( 𝑤 +P 𝑣 ) ↔ ( 𝐴 +P 𝐷 ) <P ( 𝐵 +P 𝐶 ) ) ) ) |
| 51 |
9 1 4 10 50
|
brecop |
⊢ ( ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) ∧ ( 𝐶 ∈ P ∧ 𝐷 ∈ P ) ) → ( [ 〈 𝐴 , 𝐵 〉 ] ~R <R [ 〈 𝐶 , 𝐷 〉 ] ~R ↔ ( 𝐴 +P 𝐷 ) <P ( 𝐵 +P 𝐶 ) ) ) |
| 52 |
3 4 5 6 7 8 51
|
brecop2 |
⊢ ( [ 〈 𝐴 , 𝐵 〉 ] ~R <R [ 〈 𝐶 , 𝐷 〉 ] ~R ↔ ( 𝐴 +P 𝐷 ) <P ( 𝐵 +P 𝐶 ) ) |