Metamath Proof Explorer


Theorem ltsub13

Description: 'Less than' relationship between subtraction and addition. (Contributed by NM, 17-Nov-2004)

Ref Expression
Assertion ltsub13 ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐴 < ( 𝐵𝐶 ) ↔ 𝐶 < ( 𝐵𝐴 ) ) )

Proof

Step Hyp Ref Expression
1 ltaddsub ( ( 𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 𝐴 + 𝐶 ) < 𝐵𝐴 < ( 𝐵𝐶 ) ) )
2 ltaddsub2 ( ( 𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 𝐴 + 𝐶 ) < 𝐵𝐶 < ( 𝐵𝐴 ) ) )
3 1 2 bitr3d ( ( 𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 < ( 𝐵𝐶 ) ↔ 𝐶 < ( 𝐵𝐴 ) ) )
4 3 3com23 ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐴 < ( 𝐵𝐶 ) ↔ 𝐶 < ( 𝐵𝐴 ) ) )