Metamath Proof Explorer
Description: Subtraction from both sides of 'less than'. (Contributed by Mario
Carneiro, 30-May-2016)
|
|
Ref |
Expression |
|
Hypotheses |
leidd.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
|
|
ltnegd.2 |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
|
|
ltadd1d.3 |
⊢ ( 𝜑 → 𝐶 ∈ ℝ ) |
|
|
ltadd1dd.4 |
⊢ ( 𝜑 → 𝐴 < 𝐵 ) |
|
Assertion |
ltsub1dd |
⊢ ( 𝜑 → ( 𝐴 − 𝐶 ) < ( 𝐵 − 𝐶 ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
leidd.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
2 |
|
ltnegd.2 |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
3 |
|
ltadd1d.3 |
⊢ ( 𝜑 → 𝐶 ∈ ℝ ) |
4 |
|
ltadd1dd.4 |
⊢ ( 𝜑 → 𝐴 < 𝐵 ) |
5 |
1 2 3
|
ltsub1d |
⊢ ( 𝜑 → ( 𝐴 < 𝐵 ↔ ( 𝐴 − 𝐶 ) < ( 𝐵 − 𝐶 ) ) ) |
6 |
4 5
|
mpbid |
⊢ ( 𝜑 → ( 𝐴 − 𝐶 ) < ( 𝐵 − 𝐶 ) ) |