Description: 'Less than' relationship between subtraction and addition. (Contributed by NM, 4-Oct-1999)
Ref | Expression | ||
---|---|---|---|
Assertion | ltsub23 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( ( 𝐴 − 𝐵 ) < 𝐶 ↔ ( 𝐴 − 𝐶 ) < 𝐵 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltsubadd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( ( 𝐴 − 𝐵 ) < 𝐶 ↔ 𝐴 < ( 𝐶 + 𝐵 ) ) ) | |
2 | ltsubadd2 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 𝐴 − 𝐶 ) < 𝐵 ↔ 𝐴 < ( 𝐶 + 𝐵 ) ) ) | |
3 | 2 | 3com23 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( ( 𝐴 − 𝐶 ) < 𝐵 ↔ 𝐴 < ( 𝐶 + 𝐵 ) ) ) |
4 | 1 3 | bitr4d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( ( 𝐴 − 𝐵 ) < 𝐶 ↔ ( 𝐴 − 𝐶 ) < 𝐵 ) ) |