Metamath Proof Explorer


Theorem ltsub23

Description: 'Less than' relationship between subtraction and addition. (Contributed by NM, 4-Oct-1999)

Ref Expression
Assertion ltsub23 ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( ( 𝐴𝐵 ) < 𝐶 ↔ ( 𝐴𝐶 ) < 𝐵 ) )

Proof

Step Hyp Ref Expression
1 ltsubadd ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( ( 𝐴𝐵 ) < 𝐶𝐴 < ( 𝐶 + 𝐵 ) ) )
2 ltsubadd2 ( ( 𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 𝐴𝐶 ) < 𝐵𝐴 < ( 𝐶 + 𝐵 ) ) )
3 2 3com23 ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( ( 𝐴𝐶 ) < 𝐵𝐴 < ( 𝐶 + 𝐵 ) ) )
4 1 3 bitr4d ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( ( 𝐴𝐵 ) < 𝐶 ↔ ( 𝐴𝐶 ) < 𝐵 ) )