Database
REAL AND COMPLEX NUMBERS
Real and complex numbers - basic operations
Ordering on reals (cont.)
ltsubaddi
Metamath Proof Explorer
Description: 'Less than' relationship between subtraction and addition. (Contributed by NM , 21-Jan-1997) (Proof shortened by Andrew Salmon , 19-Nov-2011)
Ref
Expression
Hypotheses
lt2.1
⊢ 𝐴 ∈ ℝ
lt2.2
⊢ 𝐵 ∈ ℝ
lt2.3
⊢ 𝐶 ∈ ℝ
Assertion
ltsubaddi
⊢ ( ( 𝐴 − 𝐵 ) < 𝐶 ↔ 𝐴 < ( 𝐶 + 𝐵 ) )
Proof
Step
Hyp
Ref
Expression
1
lt2.1
⊢ 𝐴 ∈ ℝ
2
lt2.2
⊢ 𝐵 ∈ ℝ
3
lt2.3
⊢ 𝐶 ∈ ℝ
4
ltsubadd
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( ( 𝐴 − 𝐵 ) < 𝐶 ↔ 𝐴 < ( 𝐶 + 𝐵 ) ) )
5
1 2 3 4
mp3an
⊢ ( ( 𝐴 − 𝐵 ) < 𝐶 ↔ 𝐴 < ( 𝐶 + 𝐵 ) )