Database REAL AND COMPLEX NUMBERS Real and complex numbers - basic operations Ordering on reals (cont.) ltsubaddi  
				
		 
		
			
		 
		Description:   'Less than' relationship between subtraction and addition.  (Contributed by NM , 21-Jan-1997)   (Proof shortened by Andrew Salmon , 19-Nov-2011) 
		
			
				
					Ref 
					Expression 
				 
					
						Hypotheses 
						lt2.1 ⊢  𝐴   ∈  ℝ  
					
						lt2.2 ⊢  𝐵   ∈  ℝ  
					
						lt2.3 ⊢  𝐶   ∈  ℝ  
				
					Assertion 
					ltsubaddi ⊢   ( ( 𝐴   −  𝐵  )  <  𝐶   ↔  𝐴   <  ( 𝐶   +  𝐵  ) )  
			
		 
		
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1 
								
							 
							lt2.1 ⊢  𝐴   ∈  ℝ  
						
							2 
								
							 
							lt2.2 ⊢  𝐵   ∈  ℝ  
						
							3 
								
							 
							lt2.3 ⊢  𝐶   ∈  ℝ  
						
							4 
								
							 
							ltsubadd ⊢  ( ( 𝐴   ∈  ℝ  ∧  𝐵   ∈  ℝ  ∧  𝐶   ∈  ℝ )  →  ( ( 𝐴   −  𝐵  )  <  𝐶   ↔  𝐴   <  ( 𝐶   +  𝐵  ) ) )  
						
							5 
								1  2  3  4 
							 
							mp3an ⊢  ( ( 𝐴   −  𝐵  )  <  𝐶   ↔  𝐴   <  ( 𝐶   +  𝐵  ) )