Metamath Proof Explorer


Theorem ltsubpos

Description: Subtracting a positive number from another number decreases it. (Contributed by NM, 17-Nov-2004) (Proof shortened by Andrew Salmon, 19-Nov-2011)

Ref Expression
Assertion ltsubpos ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 0 < 𝐴 ↔ ( 𝐵𝐴 ) < 𝐵 ) )

Proof

Step Hyp Ref Expression
1 ltaddpos ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 0 < 𝐴𝐵 < ( 𝐵 + 𝐴 ) ) )
2 ltsubadd ( ( 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 𝐵𝐴 ) < 𝐵𝐵 < ( 𝐵 + 𝐴 ) ) )
3 2 3anidm13 ( ( 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( ( 𝐵𝐴 ) < 𝐵𝐵 < ( 𝐵 + 𝐴 ) ) )
4 3 ancoms ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 𝐵𝐴 ) < 𝐵𝐵 < ( 𝐵 + 𝐴 ) ) )
5 1 4 bitr4d ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 0 < 𝐴 ↔ ( 𝐵𝐴 ) < 𝐵 ) )