Metamath Proof Explorer


Theorem lttri

Description: 'Less than' is transitive. Theorem I.17 of Apostol p. 20. (Contributed by NM, 14-May-1999)

Ref Expression
Hypotheses lt.1 𝐴 ∈ ℝ
lt.2 𝐵 ∈ ℝ
lt.3 𝐶 ∈ ℝ
Assertion lttri ( ( 𝐴 < 𝐵𝐵 < 𝐶 ) → 𝐴 < 𝐶 )

Proof

Step Hyp Ref Expression
1 lt.1 𝐴 ∈ ℝ
2 lt.2 𝐵 ∈ ℝ
3 lt.3 𝐶 ∈ ℝ
4 lttr ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( ( 𝐴 < 𝐵𝐵 < 𝐶 ) → 𝐴 < 𝐶 ) )
5 1 2 3 4 mp3an ( ( 𝐴 < 𝐵𝐵 < 𝐶 ) → 𝐴 < 𝐶 )