Metamath Proof Explorer
Description: 'Less than' is transitive. Theorem I.17 of Apostol p. 20.
(Contributed by NM, 14-May-1999)
|
|
Ref |
Expression |
|
Hypotheses |
lt.1 |
⊢ 𝐴 ∈ ℝ |
|
|
lt.2 |
⊢ 𝐵 ∈ ℝ |
|
|
lt.3 |
⊢ 𝐶 ∈ ℝ |
|
Assertion |
lttri |
⊢ ( ( 𝐴 < 𝐵 ∧ 𝐵 < 𝐶 ) → 𝐴 < 𝐶 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
lt.1 |
⊢ 𝐴 ∈ ℝ |
2 |
|
lt.2 |
⊢ 𝐵 ∈ ℝ |
3 |
|
lt.3 |
⊢ 𝐶 ∈ ℝ |
4 |
|
lttr |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( ( 𝐴 < 𝐵 ∧ 𝐵 < 𝐶 ) → 𝐴 < 𝐶 ) ) |
5 |
1 2 3 4
|
mp3an |
⊢ ( ( 𝐴 < 𝐵 ∧ 𝐵 < 𝐶 ) → 𝐴 < 𝐶 ) |