Metamath Proof Explorer


Theorem lttri2i

Description: Consequence of trichotomy. (Contributed by NM, 19-Jan-1997)

Ref Expression
Hypotheses lt.1 𝐴 ∈ ℝ
lt.2 𝐵 ∈ ℝ
Assertion lttri2i ( 𝐴𝐵 ↔ ( 𝐴 < 𝐵𝐵 < 𝐴 ) )

Proof

Step Hyp Ref Expression
1 lt.1 𝐴 ∈ ℝ
2 lt.2 𝐵 ∈ ℝ
3 lttri2 ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴𝐵 ↔ ( 𝐴 < 𝐵𝐵 < 𝐴 ) ) )
4 1 2 3 mp2an ( 𝐴𝐵 ↔ ( 𝐴 < 𝐵𝐵 < 𝐴 ) )