Metamath Proof Explorer
Description: Trichotomy law for 'less than'. (Contributed by NM, 20-Sep-2007) (Proof
shortened by Andrew Salmon, 19-Nov-2011)
|
|
Ref |
Expression |
|
Assertion |
lttri4 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 < 𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵 < 𝐴 ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
ltso |
⊢ < Or ℝ |
2 |
|
solin |
⊢ ( ( < Or ℝ ∧ ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ) → ( 𝐴 < 𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵 < 𝐴 ) ) |
3 |
1 2
|
mpan |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 < 𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵 < 𝐴 ) ) |