Metamath Proof Explorer


Theorem lttri4

Description: Trichotomy law for 'less than'. (Contributed by NM, 20-Sep-2007) (Proof shortened by Andrew Salmon, 19-Nov-2011)

Ref Expression
Assertion lttri4 ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 < 𝐵𝐴 = 𝐵𝐵 < 𝐴 ) )

Proof

Step Hyp Ref Expression
1 ltso < Or ℝ
2 solin ( ( < Or ℝ ∧ ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ) → ( 𝐴 < 𝐵𝐴 = 𝐵𝐵 < 𝐴 ) )
3 1 2 mpan ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 < 𝐵𝐴 = 𝐵𝐵 < 𝐴 ) )