Metamath Proof Explorer
		
		
		
		Description:  Trichotomy law for 'less than'.  (Contributed by NM, 20-Sep-2007)
       (Proof shortened by Andrew Salmon, 19-Nov-2011)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | ltd.1 | ⊢ ( 𝜑  →  𝐴  ∈  ℝ ) | 
					
						|  |  | ltd.2 | ⊢ ( 𝜑  →  𝐵  ∈  ℝ ) | 
				
					|  | Assertion | lttri4d | ⊢  ( 𝜑  →  ( 𝐴  <  𝐵  ∨  𝐴  =  𝐵  ∨  𝐵  <  𝐴 ) ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ltd.1 | ⊢ ( 𝜑  →  𝐴  ∈  ℝ ) | 
						
							| 2 |  | ltd.2 | ⊢ ( 𝜑  →  𝐵  ∈  ℝ ) | 
						
							| 3 |  | lttri4 | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( 𝐴  <  𝐵  ∨  𝐴  =  𝐵  ∨  𝐵  <  𝐴 ) ) | 
						
							| 4 | 1 2 3 | syl2anc | ⊢ ( 𝜑  →  ( 𝐴  <  𝐵  ∨  𝐴  =  𝐵  ∨  𝐵  <  𝐴 ) ) |