Metamath Proof Explorer


Theorem lttri4d

Description: Trichotomy law for 'less than'. (Contributed by NM, 20-Sep-2007) (Proof shortened by Andrew Salmon, 19-Nov-2011)

Ref Expression
Hypotheses ltd.1 ( 𝜑𝐴 ∈ ℝ )
ltd.2 ( 𝜑𝐵 ∈ ℝ )
Assertion lttri4d ( 𝜑 → ( 𝐴 < 𝐵𝐴 = 𝐵𝐵 < 𝐴 ) )

Proof

Step Hyp Ref Expression
1 ltd.1 ( 𝜑𝐴 ∈ ℝ )
2 ltd.2 ( 𝜑𝐵 ∈ ℝ )
3 lttri4 ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 < 𝐵𝐴 = 𝐵𝐵 < 𝐴 ) )
4 1 2 3 syl2anc ( 𝜑 → ( 𝐴 < 𝐵𝐴 = 𝐵𝐵 < 𝐴 ) )