Description: Less than well-orders the naturals. (Contributed by Scott Fenton, 6-Aug-2013)
Ref | Expression | ||
---|---|---|---|
Assertion | ltwenn | ⊢ < We ℕ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltweuz | ⊢ < We ( ℤ≥ ‘ 1 ) | |
2 | nnuz | ⊢ ℕ = ( ℤ≥ ‘ 1 ) | |
3 | weeq2 | ⊢ ( ℕ = ( ℤ≥ ‘ 1 ) → ( < We ℕ ↔ < We ( ℤ≥ ‘ 1 ) ) ) | |
4 | 2 3 | ax-mp | ⊢ ( < We ℕ ↔ < We ( ℤ≥ ‘ 1 ) ) |
5 | 1 4 | mpbir | ⊢ < We ℕ |