Description: Less than well-orders the naturals. (Contributed by Scott Fenton, 6-Aug-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ltwenn | ⊢ < We ℕ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltweuz | ⊢ < We ( ℤ≥ ‘ 1 ) | |
| 2 | nnuz | ⊢ ℕ = ( ℤ≥ ‘ 1 ) | |
| 3 | weeq2 | ⊢ ( ℕ = ( ℤ≥ ‘ 1 ) → ( < We ℕ ↔ < We ( ℤ≥ ‘ 1 ) ) ) | |
| 4 | 2 3 | ax-mp | ⊢ ( < We ℕ ↔ < We ( ℤ≥ ‘ 1 ) ) |
| 5 | 1 4 | mpbir | ⊢ < We ℕ |