Step |
Hyp |
Ref |
Expression |
1 |
|
ordom |
⊢ Ord ω |
2 |
|
ordwe |
⊢ ( Ord ω → E We ω ) |
3 |
1 2
|
ax-mp |
⊢ E We ω |
4 |
|
rdgeq2 |
⊢ ( 𝐴 = if ( 𝐴 ∈ ℤ , 𝐴 , 0 ) → rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 𝐴 ) = rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , if ( 𝐴 ∈ ℤ , 𝐴 , 0 ) ) ) |
5 |
4
|
reseq1d |
⊢ ( 𝐴 = if ( 𝐴 ∈ ℤ , 𝐴 , 0 ) → ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 𝐴 ) ↾ ω ) = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , if ( 𝐴 ∈ ℤ , 𝐴 , 0 ) ) ↾ ω ) ) |
6 |
|
isoeq1 |
⊢ ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 𝐴 ) ↾ ω ) = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , if ( 𝐴 ∈ ℤ , 𝐴 , 0 ) ) ↾ ω ) → ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 𝐴 ) ↾ ω ) Isom E , < ( ω , ( ℤ≥ ‘ 𝐴 ) ) ↔ ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , if ( 𝐴 ∈ ℤ , 𝐴 , 0 ) ) ↾ ω ) Isom E , < ( ω , ( ℤ≥ ‘ 𝐴 ) ) ) ) |
7 |
5 6
|
syl |
⊢ ( 𝐴 = if ( 𝐴 ∈ ℤ , 𝐴 , 0 ) → ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 𝐴 ) ↾ ω ) Isom E , < ( ω , ( ℤ≥ ‘ 𝐴 ) ) ↔ ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , if ( 𝐴 ∈ ℤ , 𝐴 , 0 ) ) ↾ ω ) Isom E , < ( ω , ( ℤ≥ ‘ 𝐴 ) ) ) ) |
8 |
|
fveq2 |
⊢ ( 𝐴 = if ( 𝐴 ∈ ℤ , 𝐴 , 0 ) → ( ℤ≥ ‘ 𝐴 ) = ( ℤ≥ ‘ if ( 𝐴 ∈ ℤ , 𝐴 , 0 ) ) ) |
9 |
|
isoeq5 |
⊢ ( ( ℤ≥ ‘ 𝐴 ) = ( ℤ≥ ‘ if ( 𝐴 ∈ ℤ , 𝐴 , 0 ) ) → ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , if ( 𝐴 ∈ ℤ , 𝐴 , 0 ) ) ↾ ω ) Isom E , < ( ω , ( ℤ≥ ‘ 𝐴 ) ) ↔ ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , if ( 𝐴 ∈ ℤ , 𝐴 , 0 ) ) ↾ ω ) Isom E , < ( ω , ( ℤ≥ ‘ if ( 𝐴 ∈ ℤ , 𝐴 , 0 ) ) ) ) ) |
10 |
8 9
|
syl |
⊢ ( 𝐴 = if ( 𝐴 ∈ ℤ , 𝐴 , 0 ) → ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , if ( 𝐴 ∈ ℤ , 𝐴 , 0 ) ) ↾ ω ) Isom E , < ( ω , ( ℤ≥ ‘ 𝐴 ) ) ↔ ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , if ( 𝐴 ∈ ℤ , 𝐴 , 0 ) ) ↾ ω ) Isom E , < ( ω , ( ℤ≥ ‘ if ( 𝐴 ∈ ℤ , 𝐴 , 0 ) ) ) ) ) |
11 |
|
0z |
⊢ 0 ∈ ℤ |
12 |
11
|
elimel |
⊢ if ( 𝐴 ∈ ℤ , 𝐴 , 0 ) ∈ ℤ |
13 |
|
eqid |
⊢ ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , if ( 𝐴 ∈ ℤ , 𝐴 , 0 ) ) ↾ ω ) = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , if ( 𝐴 ∈ ℤ , 𝐴 , 0 ) ) ↾ ω ) |
14 |
12 13
|
om2uzisoi |
⊢ ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , if ( 𝐴 ∈ ℤ , 𝐴 , 0 ) ) ↾ ω ) Isom E , < ( ω , ( ℤ≥ ‘ if ( 𝐴 ∈ ℤ , 𝐴 , 0 ) ) ) |
15 |
7 10 14
|
dedth2v |
⊢ ( 𝐴 ∈ ℤ → ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 𝐴 ) ↾ ω ) Isom E , < ( ω , ( ℤ≥ ‘ 𝐴 ) ) ) |
16 |
|
isocnv |
⊢ ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 𝐴 ) ↾ ω ) Isom E , < ( ω , ( ℤ≥ ‘ 𝐴 ) ) → ◡ ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 𝐴 ) ↾ ω ) Isom < , E ( ( ℤ≥ ‘ 𝐴 ) , ω ) ) |
17 |
15 16
|
syl |
⊢ ( 𝐴 ∈ ℤ → ◡ ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 𝐴 ) ↾ ω ) Isom < , E ( ( ℤ≥ ‘ 𝐴 ) , ω ) ) |
18 |
|
dmres |
⊢ dom ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 𝐴 ) ↾ ω ) = ( ω ∩ dom rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 𝐴 ) ) |
19 |
|
omex |
⊢ ω ∈ V |
20 |
19
|
inex1 |
⊢ ( ω ∩ dom rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 𝐴 ) ) ∈ V |
21 |
18 20
|
eqeltri |
⊢ dom ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 𝐴 ) ↾ ω ) ∈ V |
22 |
|
cnvimass |
⊢ ( ◡ ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 𝐴 ) ↾ ω ) “ 𝑦 ) ⊆ dom ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 𝐴 ) ↾ ω ) |
23 |
21 22
|
ssexi |
⊢ ( ◡ ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 𝐴 ) ↾ ω ) “ 𝑦 ) ∈ V |
24 |
23
|
ax-gen |
⊢ ∀ 𝑦 ( ◡ ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 𝐴 ) ↾ ω ) “ 𝑦 ) ∈ V |
25 |
|
isowe2 |
⊢ ( ( ◡ ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 𝐴 ) ↾ ω ) Isom < , E ( ( ℤ≥ ‘ 𝐴 ) , ω ) ∧ ∀ 𝑦 ( ◡ ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 𝐴 ) ↾ ω ) “ 𝑦 ) ∈ V ) → ( E We ω → < We ( ℤ≥ ‘ 𝐴 ) ) ) |
26 |
17 24 25
|
sylancl |
⊢ ( 𝐴 ∈ ℤ → ( E We ω → < We ( ℤ≥ ‘ 𝐴 ) ) ) |
27 |
3 26
|
mpi |
⊢ ( 𝐴 ∈ ℤ → < We ( ℤ≥ ‘ 𝐴 ) ) |
28 |
|
uzf |
⊢ ℤ≥ : ℤ ⟶ 𝒫 ℤ |
29 |
28
|
fdmi |
⊢ dom ℤ≥ = ℤ |
30 |
27 29
|
eleq2s |
⊢ ( 𝐴 ∈ dom ℤ≥ → < We ( ℤ≥ ‘ 𝐴 ) ) |
31 |
|
we0 |
⊢ < We ∅ |
32 |
|
ndmfv |
⊢ ( ¬ 𝐴 ∈ dom ℤ≥ → ( ℤ≥ ‘ 𝐴 ) = ∅ ) |
33 |
|
weeq2 |
⊢ ( ( ℤ≥ ‘ 𝐴 ) = ∅ → ( < We ( ℤ≥ ‘ 𝐴 ) ↔ < We ∅ ) ) |
34 |
32 33
|
syl |
⊢ ( ¬ 𝐴 ∈ dom ℤ≥ → ( < We ( ℤ≥ ‘ 𝐴 ) ↔ < We ∅ ) ) |
35 |
31 34
|
mpbiri |
⊢ ( ¬ 𝐴 ∈ dom ℤ≥ → < We ( ℤ≥ ‘ 𝐴 ) ) |
36 |
30 35
|
pm2.61i |
⊢ < We ( ℤ≥ ‘ 𝐴 ) |