| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lubcl.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
| 2 |
|
lubcl.u |
⊢ 𝑈 = ( lub ‘ 𝐾 ) |
| 3 |
|
lubcl.k |
⊢ ( 𝜑 → 𝐾 ∈ 𝑉 ) |
| 4 |
|
lubcl.s |
⊢ ( 𝜑 → 𝑆 ∈ dom 𝑈 ) |
| 5 |
|
eqid |
⊢ ( le ‘ 𝐾 ) = ( le ‘ 𝐾 ) |
| 6 |
|
biid |
⊢ ( ( ∀ 𝑦 ∈ 𝑆 𝑦 ( le ‘ 𝐾 ) 𝑥 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 𝑦 ( le ‘ 𝐾 ) 𝑧 → 𝑥 ( le ‘ 𝐾 ) 𝑧 ) ) ↔ ( ∀ 𝑦 ∈ 𝑆 𝑦 ( le ‘ 𝐾 ) 𝑥 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 𝑦 ( le ‘ 𝐾 ) 𝑧 → 𝑥 ( le ‘ 𝐾 ) 𝑧 ) ) ) |
| 7 |
1 5 2 3 4
|
lubelss |
⊢ ( 𝜑 → 𝑆 ⊆ 𝐵 ) |
| 8 |
1 5 2 6 3 7
|
lubval |
⊢ ( 𝜑 → ( 𝑈 ‘ 𝑆 ) = ( ℩ 𝑥 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 𝑦 ( le ‘ 𝐾 ) 𝑥 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 𝑦 ( le ‘ 𝐾 ) 𝑧 → 𝑥 ( le ‘ 𝐾 ) 𝑧 ) ) ) ) |
| 9 |
1 5 2 6 3 4
|
lubeu |
⊢ ( 𝜑 → ∃! 𝑥 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 𝑦 ( le ‘ 𝐾 ) 𝑥 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 𝑦 ( le ‘ 𝐾 ) 𝑧 → 𝑥 ( le ‘ 𝐾 ) 𝑧 ) ) ) |
| 10 |
|
riotacl |
⊢ ( ∃! 𝑥 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 𝑦 ( le ‘ 𝐾 ) 𝑥 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 𝑦 ( le ‘ 𝐾 ) 𝑧 → 𝑥 ( le ‘ 𝐾 ) 𝑧 ) ) → ( ℩ 𝑥 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 𝑦 ( le ‘ 𝐾 ) 𝑥 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 𝑦 ( le ‘ 𝐾 ) 𝑧 → 𝑥 ( le ‘ 𝐾 ) 𝑧 ) ) ) ∈ 𝐵 ) |
| 11 |
9 10
|
syl |
⊢ ( 𝜑 → ( ℩ 𝑥 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 𝑦 ( le ‘ 𝐾 ) 𝑥 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 𝑦 ( le ‘ 𝐾 ) 𝑧 → 𝑥 ( le ‘ 𝐾 ) 𝑧 ) ) ) ∈ 𝐵 ) |
| 12 |
8 11
|
eqeltrd |
⊢ ( 𝜑 → ( 𝑈 ‘ 𝑆 ) ∈ 𝐵 ) |