Metamath Proof Explorer


Theorem lubcl

Description: The least upper bound function value belongs to the base set. (Contributed by NM, 7-Sep-2018)

Ref Expression
Hypotheses lubcl.b 𝐵 = ( Base ‘ 𝐾 )
lubcl.u 𝑈 = ( lub ‘ 𝐾 )
lubcl.k ( 𝜑𝐾𝑉 )
lubcl.s ( 𝜑𝑆 ∈ dom 𝑈 )
Assertion lubcl ( 𝜑 → ( 𝑈𝑆 ) ∈ 𝐵 )

Proof

Step Hyp Ref Expression
1 lubcl.b 𝐵 = ( Base ‘ 𝐾 )
2 lubcl.u 𝑈 = ( lub ‘ 𝐾 )
3 lubcl.k ( 𝜑𝐾𝑉 )
4 lubcl.s ( 𝜑𝑆 ∈ dom 𝑈 )
5 eqid ( le ‘ 𝐾 ) = ( le ‘ 𝐾 )
6 biid ( ( ∀ 𝑦𝑆 𝑦 ( le ‘ 𝐾 ) 𝑥 ∧ ∀ 𝑧𝐵 ( ∀ 𝑦𝑆 𝑦 ( le ‘ 𝐾 ) 𝑧𝑥 ( le ‘ 𝐾 ) 𝑧 ) ) ↔ ( ∀ 𝑦𝑆 𝑦 ( le ‘ 𝐾 ) 𝑥 ∧ ∀ 𝑧𝐵 ( ∀ 𝑦𝑆 𝑦 ( le ‘ 𝐾 ) 𝑧𝑥 ( le ‘ 𝐾 ) 𝑧 ) ) )
7 1 5 2 3 4 lubelss ( 𝜑𝑆𝐵 )
8 1 5 2 6 3 7 lubval ( 𝜑 → ( 𝑈𝑆 ) = ( 𝑥𝐵 ( ∀ 𝑦𝑆 𝑦 ( le ‘ 𝐾 ) 𝑥 ∧ ∀ 𝑧𝐵 ( ∀ 𝑦𝑆 𝑦 ( le ‘ 𝐾 ) 𝑧𝑥 ( le ‘ 𝐾 ) 𝑧 ) ) ) )
9 1 5 2 6 3 4 lubeu ( 𝜑 → ∃! 𝑥𝐵 ( ∀ 𝑦𝑆 𝑦 ( le ‘ 𝐾 ) 𝑥 ∧ ∀ 𝑧𝐵 ( ∀ 𝑦𝑆 𝑦 ( le ‘ 𝐾 ) 𝑧𝑥 ( le ‘ 𝐾 ) 𝑧 ) ) )
10 riotacl ( ∃! 𝑥𝐵 ( ∀ 𝑦𝑆 𝑦 ( le ‘ 𝐾 ) 𝑥 ∧ ∀ 𝑧𝐵 ( ∀ 𝑦𝑆 𝑦 ( le ‘ 𝐾 ) 𝑧𝑥 ( le ‘ 𝐾 ) 𝑧 ) ) → ( 𝑥𝐵 ( ∀ 𝑦𝑆 𝑦 ( le ‘ 𝐾 ) 𝑥 ∧ ∀ 𝑧𝐵 ( ∀ 𝑦𝑆 𝑦 ( le ‘ 𝐾 ) 𝑧𝑥 ( le ‘ 𝐾 ) 𝑧 ) ) ) ∈ 𝐵 )
11 9 10 syl ( 𝜑 → ( 𝑥𝐵 ( ∀ 𝑦𝑆 𝑦 ( le ‘ 𝐾 ) 𝑥 ∧ ∀ 𝑧𝐵 ( ∀ 𝑦𝑆 𝑦 ( le ‘ 𝐾 ) 𝑧𝑥 ( le ‘ 𝐾 ) 𝑧 ) ) ) ∈ 𝐵 )
12 8 11 eqeltrd ( 𝜑 → ( 𝑈𝑆 ) ∈ 𝐵 )