Metamath Proof Explorer


Theorem lubdm

Description: Domain of the least upper bound function of a poset. (Contributed by NM, 6-Sep-2018)

Ref Expression
Hypotheses lubfval.b 𝐵 = ( Base ‘ 𝐾 )
lubfval.l = ( le ‘ 𝐾 )
lubfval.u 𝑈 = ( lub ‘ 𝐾 )
lubfval.p ( 𝜓 ↔ ( ∀ 𝑦𝑠 𝑦 𝑥 ∧ ∀ 𝑧𝐵 ( ∀ 𝑦𝑠 𝑦 𝑧𝑥 𝑧 ) ) )
lubfval.k ( 𝜑𝐾𝑉 )
Assertion lubdm ( 𝜑 → dom 𝑈 = { 𝑠 ∈ 𝒫 𝐵 ∣ ∃! 𝑥𝐵 𝜓 } )

Proof

Step Hyp Ref Expression
1 lubfval.b 𝐵 = ( Base ‘ 𝐾 )
2 lubfval.l = ( le ‘ 𝐾 )
3 lubfval.u 𝑈 = ( lub ‘ 𝐾 )
4 lubfval.p ( 𝜓 ↔ ( ∀ 𝑦𝑠 𝑦 𝑥 ∧ ∀ 𝑧𝐵 ( ∀ 𝑦𝑠 𝑦 𝑧𝑥 𝑧 ) ) )
5 lubfval.k ( 𝜑𝐾𝑉 )
6 1 2 3 4 5 lubfval ( 𝜑𝑈 = ( ( 𝑠 ∈ 𝒫 𝐵 ↦ ( 𝑥𝐵 𝜓 ) ) ↾ { 𝑠 ∣ ∃! 𝑥𝐵 𝜓 } ) )
7 6 dmeqd ( 𝜑 → dom 𝑈 = dom ( ( 𝑠 ∈ 𝒫 𝐵 ↦ ( 𝑥𝐵 𝜓 ) ) ↾ { 𝑠 ∣ ∃! 𝑥𝐵 𝜓 } ) )
8 riotaex ( 𝑥𝐵 𝜓 ) ∈ V
9 eqid ( 𝑠 ∈ 𝒫 𝐵 ↦ ( 𝑥𝐵 𝜓 ) ) = ( 𝑠 ∈ 𝒫 𝐵 ↦ ( 𝑥𝐵 𝜓 ) )
10 8 9 dmmpti dom ( 𝑠 ∈ 𝒫 𝐵 ↦ ( 𝑥𝐵 𝜓 ) ) = 𝒫 𝐵
11 10 ineq2i ( { 𝑠 ∣ ∃! 𝑥𝐵 𝜓 } ∩ dom ( 𝑠 ∈ 𝒫 𝐵 ↦ ( 𝑥𝐵 𝜓 ) ) ) = ( { 𝑠 ∣ ∃! 𝑥𝐵 𝜓 } ∩ 𝒫 𝐵 )
12 dmres dom ( ( 𝑠 ∈ 𝒫 𝐵 ↦ ( 𝑥𝐵 𝜓 ) ) ↾ { 𝑠 ∣ ∃! 𝑥𝐵 𝜓 } ) = ( { 𝑠 ∣ ∃! 𝑥𝐵 𝜓 } ∩ dom ( 𝑠 ∈ 𝒫 𝐵 ↦ ( 𝑥𝐵 𝜓 ) ) )
13 dfrab2 { 𝑠 ∈ 𝒫 𝐵 ∣ ∃! 𝑥𝐵 𝜓 } = ( { 𝑠 ∣ ∃! 𝑥𝐵 𝜓 } ∩ 𝒫 𝐵 )
14 11 12 13 3eqtr4i dom ( ( 𝑠 ∈ 𝒫 𝐵 ↦ ( 𝑥𝐵 𝜓 ) ) ↾ { 𝑠 ∣ ∃! 𝑥𝐵 𝜓 } ) = { 𝑠 ∈ 𝒫 𝐵 ∣ ∃! 𝑥𝐵 𝜓 }
15 7 14 eqtrdi ( 𝜑 → dom 𝑈 = { 𝑠 ∈ 𝒫 𝐵 ∣ ∃! 𝑥𝐵 𝜓 } )