| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							lublem.b | 
							⊢ 𝐵  =  ( Base ‘ 𝐾 )  | 
						
						
							| 2 | 
							
								
							 | 
							lublem.l | 
							⊢  ≤   =  ( le ‘ 𝐾 )  | 
						
						
							| 3 | 
							
								
							 | 
							lublem.u | 
							⊢ 𝑈  =  ( lub ‘ 𝐾 )  | 
						
						
							| 4 | 
							
								
							 | 
							clatl | 
							⊢ ( 𝐾  ∈  CLat  →  𝐾  ∈  Lat )  | 
						
						
							| 5 | 
							
								
							 | 
							ssel | 
							⊢ ( 𝑆  ⊆  𝐵  →  ( 𝑋  ∈  𝑆  →  𝑋  ∈  𝐵 ) )  | 
						
						
							| 6 | 
							
								5
							 | 
							impcom | 
							⊢ ( ( 𝑋  ∈  𝑆  ∧  𝑆  ⊆  𝐵 )  →  𝑋  ∈  𝐵 )  | 
						
						
							| 7 | 
							
								1 3
							 | 
							lubsn | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  𝑋  ∈  𝐵 )  →  ( 𝑈 ‘ { 𝑋 } )  =  𝑋 )  | 
						
						
							| 8 | 
							
								4 6 7
							 | 
							syl2an | 
							⊢ ( ( 𝐾  ∈  CLat  ∧  ( 𝑋  ∈  𝑆  ∧  𝑆  ⊆  𝐵 ) )  →  ( 𝑈 ‘ { 𝑋 } )  =  𝑋 )  | 
						
						
							| 9 | 
							
								8
							 | 
							3impb | 
							⊢ ( ( 𝐾  ∈  CLat  ∧  𝑋  ∈  𝑆  ∧  𝑆  ⊆  𝐵 )  →  ( 𝑈 ‘ { 𝑋 } )  =  𝑋 )  | 
						
						
							| 10 | 
							
								
							 | 
							snssi | 
							⊢ ( 𝑋  ∈  𝑆  →  { 𝑋 }  ⊆  𝑆 )  | 
						
						
							| 11 | 
							
								1 2 3
							 | 
							lubss | 
							⊢ ( ( 𝐾  ∈  CLat  ∧  𝑆  ⊆  𝐵  ∧  { 𝑋 }  ⊆  𝑆 )  →  ( 𝑈 ‘ { 𝑋 } )  ≤  ( 𝑈 ‘ 𝑆 ) )  | 
						
						
							| 12 | 
							
								10 11
							 | 
							syl3an3 | 
							⊢ ( ( 𝐾  ∈  CLat  ∧  𝑆  ⊆  𝐵  ∧  𝑋  ∈  𝑆 )  →  ( 𝑈 ‘ { 𝑋 } )  ≤  ( 𝑈 ‘ 𝑆 ) )  | 
						
						
							| 13 | 
							
								12
							 | 
							3com23 | 
							⊢ ( ( 𝐾  ∈  CLat  ∧  𝑋  ∈  𝑆  ∧  𝑆  ⊆  𝐵 )  →  ( 𝑈 ‘ { 𝑋 } )  ≤  ( 𝑈 ‘ 𝑆 ) )  | 
						
						
							| 14 | 
							
								9 13
							 | 
							eqbrtrrd | 
							⊢ ( ( 𝐾  ∈  CLat  ∧  𝑋  ∈  𝑆  ∧  𝑆  ⊆  𝐵 )  →  𝑋  ≤  ( 𝑈 ‘ 𝑆 ) )  |