Metamath Proof Explorer


Theorem lubelss

Description: A member of the domain of the least upper bound function is a subset of the base set. (Contributed by NM, 7-Sep-2018)

Ref Expression
Hypotheses lubs.b 𝐵 = ( Base ‘ 𝐾 )
lubs.l = ( le ‘ 𝐾 )
lubs.u 𝑈 = ( lub ‘ 𝐾 )
lubs.k ( 𝜑𝐾𝑉 )
lubs.s ( 𝜑𝑆 ∈ dom 𝑈 )
Assertion lubelss ( 𝜑𝑆𝐵 )

Proof

Step Hyp Ref Expression
1 lubs.b 𝐵 = ( Base ‘ 𝐾 )
2 lubs.l = ( le ‘ 𝐾 )
3 lubs.u 𝑈 = ( lub ‘ 𝐾 )
4 lubs.k ( 𝜑𝐾𝑉 )
5 lubs.s ( 𝜑𝑆 ∈ dom 𝑈 )
6 biid ( ( ∀ 𝑦𝑆 𝑦 𝑥 ∧ ∀ 𝑧𝐵 ( ∀ 𝑦𝑆 𝑦 𝑧𝑥 𝑧 ) ) ↔ ( ∀ 𝑦𝑆 𝑦 𝑥 ∧ ∀ 𝑧𝐵 ( ∀ 𝑦𝑆 𝑦 𝑧𝑥 𝑧 ) ) )
7 1 2 3 6 4 lubeldm ( 𝜑 → ( 𝑆 ∈ dom 𝑈 ↔ ( 𝑆𝐵 ∧ ∃! 𝑥𝐵 ( ∀ 𝑦𝑆 𝑦 𝑥 ∧ ∀ 𝑧𝐵 ( ∀ 𝑦𝑆 𝑦 𝑧𝑥 𝑧 ) ) ) ) )
8 5 7 mpbid ( 𝜑 → ( 𝑆𝐵 ∧ ∃! 𝑥𝐵 ( ∀ 𝑦𝑆 𝑦 𝑥 ∧ ∀ 𝑧𝐵 ( ∀ 𝑦𝑆 𝑦 𝑧𝑥 𝑧 ) ) ) )
9 8 simpld ( 𝜑𝑆𝐵 )