Metamath Proof Explorer
		
		
		
		Description:  Unique existence proper of a member of the domain of the least upper
         bound function of a poset.  (Contributed by NM, 7-Sep-2018)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | lubval.b | ⊢ 𝐵  =  ( Base ‘ 𝐾 ) | 
					
						|  |  | lubval.l | ⊢  ≤   =  ( le ‘ 𝐾 ) | 
					
						|  |  | lubval.u | ⊢ 𝑈  =  ( lub ‘ 𝐾 ) | 
					
						|  |  | lubval.p | ⊢ ( 𝜓  ↔  ( ∀ 𝑦  ∈  𝑆 𝑦  ≤  𝑥  ∧  ∀ 𝑧  ∈  𝐵 ( ∀ 𝑦  ∈  𝑆 𝑦  ≤  𝑧  →  𝑥  ≤  𝑧 ) ) ) | 
					
						|  |  | lubval.k | ⊢ ( 𝜑  →  𝐾  ∈  𝑉 ) | 
					
						|  |  | lubeleu.s | ⊢ ( 𝜑  →  𝑆  ∈  dom  𝑈 ) | 
				
					|  | Assertion | lubeu | ⊢  ( 𝜑  →  ∃! 𝑥  ∈  𝐵 𝜓 ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lubval.b | ⊢ 𝐵  =  ( Base ‘ 𝐾 ) | 
						
							| 2 |  | lubval.l | ⊢  ≤   =  ( le ‘ 𝐾 ) | 
						
							| 3 |  | lubval.u | ⊢ 𝑈  =  ( lub ‘ 𝐾 ) | 
						
							| 4 |  | lubval.p | ⊢ ( 𝜓  ↔  ( ∀ 𝑦  ∈  𝑆 𝑦  ≤  𝑥  ∧  ∀ 𝑧  ∈  𝐵 ( ∀ 𝑦  ∈  𝑆 𝑦  ≤  𝑧  →  𝑥  ≤  𝑧 ) ) ) | 
						
							| 5 |  | lubval.k | ⊢ ( 𝜑  →  𝐾  ∈  𝑉 ) | 
						
							| 6 |  | lubeleu.s | ⊢ ( 𝜑  →  𝑆  ∈  dom  𝑈 ) | 
						
							| 7 | 1 2 3 4 5 | lubeldm | ⊢ ( 𝜑  →  ( 𝑆  ∈  dom  𝑈  ↔  ( 𝑆  ⊆  𝐵  ∧  ∃! 𝑥  ∈  𝐵 𝜓 ) ) ) | 
						
							| 8 | 6 7 | mpbid | ⊢ ( 𝜑  →  ( 𝑆  ⊆  𝐵  ∧  ∃! 𝑥  ∈  𝐵 𝜓 ) ) | 
						
							| 9 | 8 | simprd | ⊢ ( 𝜑  →  ∃! 𝑥  ∈  𝐵 𝜓 ) |