Metamath Proof Explorer


Theorem lubeu

Description: Unique existence proper of a member of the domain of the least upper bound function of a poset. (Contributed by NM, 7-Sep-2018)

Ref Expression
Hypotheses lubval.b 𝐵 = ( Base ‘ 𝐾 )
lubval.l = ( le ‘ 𝐾 )
lubval.u 𝑈 = ( lub ‘ 𝐾 )
lubval.p ( 𝜓 ↔ ( ∀ 𝑦𝑆 𝑦 𝑥 ∧ ∀ 𝑧𝐵 ( ∀ 𝑦𝑆 𝑦 𝑧𝑥 𝑧 ) ) )
lubval.k ( 𝜑𝐾𝑉 )
lubeleu.s ( 𝜑𝑆 ∈ dom 𝑈 )
Assertion lubeu ( 𝜑 → ∃! 𝑥𝐵 𝜓 )

Proof

Step Hyp Ref Expression
1 lubval.b 𝐵 = ( Base ‘ 𝐾 )
2 lubval.l = ( le ‘ 𝐾 )
3 lubval.u 𝑈 = ( lub ‘ 𝐾 )
4 lubval.p ( 𝜓 ↔ ( ∀ 𝑦𝑆 𝑦 𝑥 ∧ ∀ 𝑧𝐵 ( ∀ 𝑦𝑆 𝑦 𝑧𝑥 𝑧 ) ) )
5 lubval.k ( 𝜑𝐾𝑉 )
6 lubeleu.s ( 𝜑𝑆 ∈ dom 𝑈 )
7 1 2 3 4 5 lubeldm ( 𝜑 → ( 𝑆 ∈ dom 𝑈 ↔ ( 𝑆𝐵 ∧ ∃! 𝑥𝐵 𝜓 ) ) )
8 6 7 mpbid ( 𝜑 → ( 𝑆𝐵 ∧ ∃! 𝑥𝐵 𝜓 ) )
9 8 simprd ( 𝜑 → ∃! 𝑥𝐵 𝜓 )