Metamath Proof Explorer


Theorem lubid

Description: The LUB of elements less than or equal to a fixed value equals that value. (Contributed by NM, 19-Oct-2011) (Revised by NM, 7-Sep-2018)

Ref Expression
Hypotheses lubid.b 𝐵 = ( Base ‘ 𝐾 )
lubid.l = ( le ‘ 𝐾 )
lubid.u 𝑈 = ( lub ‘ 𝐾 )
lubid.k ( 𝜑𝐾 ∈ Poset )
lubid.x ( 𝜑𝑋𝐵 )
Assertion lubid ( 𝜑 → ( 𝑈 ‘ { 𝑦𝐵𝑦 𝑋 } ) = 𝑋 )

Proof

Step Hyp Ref Expression
1 lubid.b 𝐵 = ( Base ‘ 𝐾 )
2 lubid.l = ( le ‘ 𝐾 )
3 lubid.u 𝑈 = ( lub ‘ 𝐾 )
4 lubid.k ( 𝜑𝐾 ∈ Poset )
5 lubid.x ( 𝜑𝑋𝐵 )
6 biid ( ( ∀ 𝑧 ∈ { 𝑦𝐵𝑦 𝑋 } 𝑧 𝑥 ∧ ∀ 𝑤𝐵 ( ∀ 𝑧 ∈ { 𝑦𝐵𝑦 𝑋 } 𝑧 𝑤𝑥 𝑤 ) ) ↔ ( ∀ 𝑧 ∈ { 𝑦𝐵𝑦 𝑋 } 𝑧 𝑥 ∧ ∀ 𝑤𝐵 ( ∀ 𝑧 ∈ { 𝑦𝐵𝑦 𝑋 } 𝑧 𝑤𝑥 𝑤 ) ) )
7 ssrab2 { 𝑦𝐵𝑦 𝑋 } ⊆ 𝐵
8 7 a1i ( 𝜑 → { 𝑦𝐵𝑦 𝑋 } ⊆ 𝐵 )
9 1 2 3 6 4 8 lubval ( 𝜑 → ( 𝑈 ‘ { 𝑦𝐵𝑦 𝑋 } ) = ( 𝑥𝐵 ( ∀ 𝑧 ∈ { 𝑦𝐵𝑦 𝑋 } 𝑧 𝑥 ∧ ∀ 𝑤𝐵 ( ∀ 𝑧 ∈ { 𝑦𝐵𝑦 𝑋 } 𝑧 𝑤𝑥 𝑤 ) ) ) )
10 1 2 3 4 5 lublecllem ( ( 𝜑𝑥𝐵 ) → ( ( ∀ 𝑧 ∈ { 𝑦𝐵𝑦 𝑋 } 𝑧 𝑥 ∧ ∀ 𝑤𝐵 ( ∀ 𝑧 ∈ { 𝑦𝐵𝑦 𝑋 } 𝑧 𝑤𝑥 𝑤 ) ) ↔ 𝑥 = 𝑋 ) )
11 5 10 riota5 ( 𝜑 → ( 𝑥𝐵 ( ∀ 𝑧 ∈ { 𝑦𝐵𝑦 𝑋 } 𝑧 𝑥 ∧ ∀ 𝑤𝐵 ( ∀ 𝑧 ∈ { 𝑦𝐵𝑦 𝑋 } 𝑧 𝑤𝑥 𝑤 ) ) ) = 𝑋 )
12 9 11 eqtrd ( 𝜑 → ( 𝑈 ‘ { 𝑦𝐵𝑦 𝑋 } ) = 𝑋 )