| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lubid.b | ⊢ 𝐵  =  ( Base ‘ 𝐾 ) | 
						
							| 2 |  | lubid.l | ⊢  ≤   =  ( le ‘ 𝐾 ) | 
						
							| 3 |  | lubid.u | ⊢ 𝑈  =  ( lub ‘ 𝐾 ) | 
						
							| 4 |  | lubid.k | ⊢ ( 𝜑  →  𝐾  ∈  Poset ) | 
						
							| 5 |  | lubid.x | ⊢ ( 𝜑  →  𝑋  ∈  𝐵 ) | 
						
							| 6 |  | biid | ⊢ ( ( ∀ 𝑧  ∈  { 𝑦  ∈  𝐵  ∣  𝑦  ≤  𝑋 } 𝑧  ≤  𝑥  ∧  ∀ 𝑤  ∈  𝐵 ( ∀ 𝑧  ∈  { 𝑦  ∈  𝐵  ∣  𝑦  ≤  𝑋 } 𝑧  ≤  𝑤  →  𝑥  ≤  𝑤 ) )  ↔  ( ∀ 𝑧  ∈  { 𝑦  ∈  𝐵  ∣  𝑦  ≤  𝑋 } 𝑧  ≤  𝑥  ∧  ∀ 𝑤  ∈  𝐵 ( ∀ 𝑧  ∈  { 𝑦  ∈  𝐵  ∣  𝑦  ≤  𝑋 } 𝑧  ≤  𝑤  →  𝑥  ≤  𝑤 ) ) ) | 
						
							| 7 |  | ssrab2 | ⊢ { 𝑦  ∈  𝐵  ∣  𝑦  ≤  𝑋 }  ⊆  𝐵 | 
						
							| 8 | 7 | a1i | ⊢ ( 𝜑  →  { 𝑦  ∈  𝐵  ∣  𝑦  ≤  𝑋 }  ⊆  𝐵 ) | 
						
							| 9 | 1 2 3 6 4 8 | lubval | ⊢ ( 𝜑  →  ( 𝑈 ‘ { 𝑦  ∈  𝐵  ∣  𝑦  ≤  𝑋 } )  =  ( ℩ 𝑥  ∈  𝐵 ( ∀ 𝑧  ∈  { 𝑦  ∈  𝐵  ∣  𝑦  ≤  𝑋 } 𝑧  ≤  𝑥  ∧  ∀ 𝑤  ∈  𝐵 ( ∀ 𝑧  ∈  { 𝑦  ∈  𝐵  ∣  𝑦  ≤  𝑋 } 𝑧  ≤  𝑤  →  𝑥  ≤  𝑤 ) ) ) ) | 
						
							| 10 | 1 2 3 4 5 | lublecllem | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  →  ( ( ∀ 𝑧  ∈  { 𝑦  ∈  𝐵  ∣  𝑦  ≤  𝑋 } 𝑧  ≤  𝑥  ∧  ∀ 𝑤  ∈  𝐵 ( ∀ 𝑧  ∈  { 𝑦  ∈  𝐵  ∣  𝑦  ≤  𝑋 } 𝑧  ≤  𝑤  →  𝑥  ≤  𝑤 ) )  ↔  𝑥  =  𝑋 ) ) | 
						
							| 11 | 5 10 | riota5 | ⊢ ( 𝜑  →  ( ℩ 𝑥  ∈  𝐵 ( ∀ 𝑧  ∈  { 𝑦  ∈  𝐵  ∣  𝑦  ≤  𝑋 } 𝑧  ≤  𝑥  ∧  ∀ 𝑤  ∈  𝐵 ( ∀ 𝑧  ∈  { 𝑦  ∈  𝐵  ∣  𝑦  ≤  𝑋 } 𝑧  ≤  𝑤  →  𝑥  ≤  𝑤 ) ) )  =  𝑋 ) | 
						
							| 12 | 9 11 | eqtrd | ⊢ ( 𝜑  →  ( 𝑈 ‘ { 𝑦  ∈  𝐵  ∣  𝑦  ≤  𝑋 } )  =  𝑋 ) |