Step |
Hyp |
Ref |
Expression |
1 |
|
lublem.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
lublem.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
3 |
|
lublem.u |
⊢ 𝑈 = ( lub ‘ 𝐾 ) |
4 |
1 2 3
|
lublem |
⊢ ( ( 𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵 ) → ( ∀ 𝑦 ∈ 𝑆 𝑦 ≤ ( 𝑈 ‘ 𝑆 ) ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 𝑦 ≤ 𝑧 → ( 𝑈 ‘ 𝑆 ) ≤ 𝑧 ) ) ) |
5 |
4
|
simprd |
⊢ ( ( 𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵 ) → ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 𝑦 ≤ 𝑧 → ( 𝑈 ‘ 𝑆 ) ≤ 𝑧 ) ) |
6 |
|
breq2 |
⊢ ( 𝑧 = 𝑋 → ( 𝑦 ≤ 𝑧 ↔ 𝑦 ≤ 𝑋 ) ) |
7 |
6
|
ralbidv |
⊢ ( 𝑧 = 𝑋 → ( ∀ 𝑦 ∈ 𝑆 𝑦 ≤ 𝑧 ↔ ∀ 𝑦 ∈ 𝑆 𝑦 ≤ 𝑋 ) ) |
8 |
|
breq2 |
⊢ ( 𝑧 = 𝑋 → ( ( 𝑈 ‘ 𝑆 ) ≤ 𝑧 ↔ ( 𝑈 ‘ 𝑆 ) ≤ 𝑋 ) ) |
9 |
7 8
|
imbi12d |
⊢ ( 𝑧 = 𝑋 → ( ( ∀ 𝑦 ∈ 𝑆 𝑦 ≤ 𝑧 → ( 𝑈 ‘ 𝑆 ) ≤ 𝑧 ) ↔ ( ∀ 𝑦 ∈ 𝑆 𝑦 ≤ 𝑋 → ( 𝑈 ‘ 𝑆 ) ≤ 𝑋 ) ) ) |
10 |
9
|
rspccva |
⊢ ( ( ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 𝑦 ≤ 𝑧 → ( 𝑈 ‘ 𝑆 ) ≤ 𝑧 ) ∧ 𝑋 ∈ 𝐵 ) → ( ∀ 𝑦 ∈ 𝑆 𝑦 ≤ 𝑋 → ( 𝑈 ‘ 𝑆 ) ≤ 𝑋 ) ) |
11 |
5 10
|
stoic3 |
⊢ ( ( 𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵 ∧ 𝑋 ∈ 𝐵 ) → ( ∀ 𝑦 ∈ 𝑆 𝑦 ≤ 𝑋 → ( 𝑈 ‘ 𝑆 ) ≤ 𝑋 ) ) |