Metamath Proof Explorer


Theorem lubl

Description: The LUB of a complete lattice subset is the least bound. (Contributed by NM, 19-Oct-2011)

Ref Expression
Hypotheses lublem.b 𝐵 = ( Base ‘ 𝐾 )
lublem.l = ( le ‘ 𝐾 )
lublem.u 𝑈 = ( lub ‘ 𝐾 )
Assertion lubl ( ( 𝐾 ∈ CLat ∧ 𝑆𝐵𝑋𝐵 ) → ( ∀ 𝑦𝑆 𝑦 𝑋 → ( 𝑈𝑆 ) 𝑋 ) )

Proof

Step Hyp Ref Expression
1 lublem.b 𝐵 = ( Base ‘ 𝐾 )
2 lublem.l = ( le ‘ 𝐾 )
3 lublem.u 𝑈 = ( lub ‘ 𝐾 )
4 1 2 3 lublem ( ( 𝐾 ∈ CLat ∧ 𝑆𝐵 ) → ( ∀ 𝑦𝑆 𝑦 ( 𝑈𝑆 ) ∧ ∀ 𝑧𝐵 ( ∀ 𝑦𝑆 𝑦 𝑧 → ( 𝑈𝑆 ) 𝑧 ) ) )
5 4 simprd ( ( 𝐾 ∈ CLat ∧ 𝑆𝐵 ) → ∀ 𝑧𝐵 ( ∀ 𝑦𝑆 𝑦 𝑧 → ( 𝑈𝑆 ) 𝑧 ) )
6 breq2 ( 𝑧 = 𝑋 → ( 𝑦 𝑧𝑦 𝑋 ) )
7 6 ralbidv ( 𝑧 = 𝑋 → ( ∀ 𝑦𝑆 𝑦 𝑧 ↔ ∀ 𝑦𝑆 𝑦 𝑋 ) )
8 breq2 ( 𝑧 = 𝑋 → ( ( 𝑈𝑆 ) 𝑧 ↔ ( 𝑈𝑆 ) 𝑋 ) )
9 7 8 imbi12d ( 𝑧 = 𝑋 → ( ( ∀ 𝑦𝑆 𝑦 𝑧 → ( 𝑈𝑆 ) 𝑧 ) ↔ ( ∀ 𝑦𝑆 𝑦 𝑋 → ( 𝑈𝑆 ) 𝑋 ) ) )
10 9 rspccva ( ( ∀ 𝑧𝐵 ( ∀ 𝑦𝑆 𝑦 𝑧 → ( 𝑈𝑆 ) 𝑧 ) ∧ 𝑋𝐵 ) → ( ∀ 𝑦𝑆 𝑦 𝑋 → ( 𝑈𝑆 ) 𝑋 ) )
11 5 10 stoic3 ( ( 𝐾 ∈ CLat ∧ 𝑆𝐵𝑋𝐵 ) → ( ∀ 𝑦𝑆 𝑦 𝑋 → ( 𝑈𝑆 ) 𝑋 ) )