| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							lublem.b | 
							⊢ 𝐵  =  ( Base ‘ 𝐾 )  | 
						
						
							| 2 | 
							
								
							 | 
							lublem.l | 
							⊢  ≤   =  ( le ‘ 𝐾 )  | 
						
						
							| 3 | 
							
								
							 | 
							lublem.u | 
							⊢ 𝑈  =  ( lub ‘ 𝐾 )  | 
						
						
							| 4 | 
							
								1 2 3
							 | 
							lublem | 
							⊢ ( ( 𝐾  ∈  CLat  ∧  𝑆  ⊆  𝐵 )  →  ( ∀ 𝑦  ∈  𝑆 𝑦  ≤  ( 𝑈 ‘ 𝑆 )  ∧  ∀ 𝑧  ∈  𝐵 ( ∀ 𝑦  ∈  𝑆 𝑦  ≤  𝑧  →  ( 𝑈 ‘ 𝑆 )  ≤  𝑧 ) ) )  | 
						
						
							| 5 | 
							
								4
							 | 
							simprd | 
							⊢ ( ( 𝐾  ∈  CLat  ∧  𝑆  ⊆  𝐵 )  →  ∀ 𝑧  ∈  𝐵 ( ∀ 𝑦  ∈  𝑆 𝑦  ≤  𝑧  →  ( 𝑈 ‘ 𝑆 )  ≤  𝑧 ) )  | 
						
						
							| 6 | 
							
								
							 | 
							breq2 | 
							⊢ ( 𝑧  =  𝑋  →  ( 𝑦  ≤  𝑧  ↔  𝑦  ≤  𝑋 ) )  | 
						
						
							| 7 | 
							
								6
							 | 
							ralbidv | 
							⊢ ( 𝑧  =  𝑋  →  ( ∀ 𝑦  ∈  𝑆 𝑦  ≤  𝑧  ↔  ∀ 𝑦  ∈  𝑆 𝑦  ≤  𝑋 ) )  | 
						
						
							| 8 | 
							
								
							 | 
							breq2 | 
							⊢ ( 𝑧  =  𝑋  →  ( ( 𝑈 ‘ 𝑆 )  ≤  𝑧  ↔  ( 𝑈 ‘ 𝑆 )  ≤  𝑋 ) )  | 
						
						
							| 9 | 
							
								7 8
							 | 
							imbi12d | 
							⊢ ( 𝑧  =  𝑋  →  ( ( ∀ 𝑦  ∈  𝑆 𝑦  ≤  𝑧  →  ( 𝑈 ‘ 𝑆 )  ≤  𝑧 )  ↔  ( ∀ 𝑦  ∈  𝑆 𝑦  ≤  𝑋  →  ( 𝑈 ‘ 𝑆 )  ≤  𝑋 ) ) )  | 
						
						
							| 10 | 
							
								9
							 | 
							rspccva | 
							⊢ ( ( ∀ 𝑧  ∈  𝐵 ( ∀ 𝑦  ∈  𝑆 𝑦  ≤  𝑧  →  ( 𝑈 ‘ 𝑆 )  ≤  𝑧 )  ∧  𝑋  ∈  𝐵 )  →  ( ∀ 𝑦  ∈  𝑆 𝑦  ≤  𝑋  →  ( 𝑈 ‘ 𝑆 )  ≤  𝑋 ) )  | 
						
						
							| 11 | 
							
								5 10
							 | 
							stoic3 | 
							⊢ ( ( 𝐾  ∈  CLat  ∧  𝑆  ⊆  𝐵  ∧  𝑋  ∈  𝐵 )  →  ( ∀ 𝑦  ∈  𝑆 𝑦  ≤  𝑋  →  ( 𝑈 ‘ 𝑆 )  ≤  𝑋 ) )  |