Metamath Proof Explorer
		
		
		
		Description:  The greatest lower bound is the least element.  (Contributed by NM, 22-Oct-2011)  (Revised by NM, 7-Sep-2018)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | lubprop.b | ⊢ 𝐵  =  ( Base ‘ 𝐾 ) | 
					
						|  |  | lubprop.l | ⊢  ≤   =  ( le ‘ 𝐾 ) | 
					
						|  |  | lubprop.u | ⊢ 𝑈  =  ( lub ‘ 𝐾 ) | 
					
						|  |  | lubprop.k | ⊢ ( 𝜑  →  𝐾  ∈  𝑉 ) | 
					
						|  |  | lubprop.s | ⊢ ( 𝜑  →  𝑆  ∈  dom  𝑈 ) | 
					
						|  |  | luble.x | ⊢ ( 𝜑  →  𝑋  ∈  𝑆 ) | 
				
					|  | Assertion | luble | ⊢  ( 𝜑  →  𝑋  ≤  ( 𝑈 ‘ 𝑆 ) ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lubprop.b | ⊢ 𝐵  =  ( Base ‘ 𝐾 ) | 
						
							| 2 |  | lubprop.l | ⊢  ≤   =  ( le ‘ 𝐾 ) | 
						
							| 3 |  | lubprop.u | ⊢ 𝑈  =  ( lub ‘ 𝐾 ) | 
						
							| 4 |  | lubprop.k | ⊢ ( 𝜑  →  𝐾  ∈  𝑉 ) | 
						
							| 5 |  | lubprop.s | ⊢ ( 𝜑  →  𝑆  ∈  dom  𝑈 ) | 
						
							| 6 |  | luble.x | ⊢ ( 𝜑  →  𝑋  ∈  𝑆 ) | 
						
							| 7 |  | breq1 | ⊢ ( 𝑦  =  𝑋  →  ( 𝑦  ≤  ( 𝑈 ‘ 𝑆 )  ↔  𝑋  ≤  ( 𝑈 ‘ 𝑆 ) ) ) | 
						
							| 8 | 1 2 3 4 5 | lubprop | ⊢ ( 𝜑  →  ( ∀ 𝑦  ∈  𝑆 𝑦  ≤  ( 𝑈 ‘ 𝑆 )  ∧  ∀ 𝑧  ∈  𝐵 ( ∀ 𝑦  ∈  𝑆 𝑦  ≤  𝑧  →  ( 𝑈 ‘ 𝑆 )  ≤  𝑧 ) ) ) | 
						
							| 9 | 8 | simpld | ⊢ ( 𝜑  →  ∀ 𝑦  ∈  𝑆 𝑦  ≤  ( 𝑈 ‘ 𝑆 ) ) | 
						
							| 10 | 7 9 6 | rspcdva | ⊢ ( 𝜑  →  𝑋  ≤  ( 𝑈 ‘ 𝑆 ) ) |