Metamath Proof Explorer


Theorem luble

Description: The greatest lower bound is the least element. (Contributed by NM, 22-Oct-2011) (Revised by NM, 7-Sep-2018)

Ref Expression
Hypotheses lubprop.b 𝐵 = ( Base ‘ 𝐾 )
lubprop.l = ( le ‘ 𝐾 )
lubprop.u 𝑈 = ( lub ‘ 𝐾 )
lubprop.k ( 𝜑𝐾𝑉 )
lubprop.s ( 𝜑𝑆 ∈ dom 𝑈 )
luble.x ( 𝜑𝑋𝑆 )
Assertion luble ( 𝜑𝑋 ( 𝑈𝑆 ) )

Proof

Step Hyp Ref Expression
1 lubprop.b 𝐵 = ( Base ‘ 𝐾 )
2 lubprop.l = ( le ‘ 𝐾 )
3 lubprop.u 𝑈 = ( lub ‘ 𝐾 )
4 lubprop.k ( 𝜑𝐾𝑉 )
5 lubprop.s ( 𝜑𝑆 ∈ dom 𝑈 )
6 luble.x ( 𝜑𝑋𝑆 )
7 breq1 ( 𝑦 = 𝑋 → ( 𝑦 ( 𝑈𝑆 ) ↔ 𝑋 ( 𝑈𝑆 ) ) )
8 1 2 3 4 5 lubprop ( 𝜑 → ( ∀ 𝑦𝑆 𝑦 ( 𝑈𝑆 ) ∧ ∀ 𝑧𝐵 ( ∀ 𝑦𝑆 𝑦 𝑧 → ( 𝑈𝑆 ) 𝑧 ) ) )
9 8 simpld ( 𝜑 → ∀ 𝑦𝑆 𝑦 ( 𝑈𝑆 ) )
10 7 9 6 rspcdva ( 𝜑𝑋 ( 𝑈𝑆 ) )