Step |
Hyp |
Ref |
Expression |
1 |
|
lublecl.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
lublecl.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
3 |
|
lublecl.u |
⊢ 𝑈 = ( lub ‘ 𝐾 ) |
4 |
|
lublecl.k |
⊢ ( 𝜑 → 𝐾 ∈ Poset ) |
5 |
|
lublecl.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
6 |
|
ssrab2 |
⊢ { 𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋 } ⊆ 𝐵 |
7 |
6
|
a1i |
⊢ ( 𝜑 → { 𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋 } ⊆ 𝐵 ) |
8 |
1 2 3 4 5
|
lublecllem |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( ( ∀ 𝑧 ∈ { 𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋 } 𝑧 ≤ 𝑥 ∧ ∀ 𝑤 ∈ 𝐵 ( ∀ 𝑧 ∈ { 𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋 } 𝑧 ≤ 𝑤 → 𝑥 ≤ 𝑤 ) ) ↔ 𝑥 = 𝑋 ) ) |
9 |
8
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ( ( ∀ 𝑧 ∈ { 𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋 } 𝑧 ≤ 𝑥 ∧ ∀ 𝑤 ∈ 𝐵 ( ∀ 𝑧 ∈ { 𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋 } 𝑧 ≤ 𝑤 → 𝑥 ≤ 𝑤 ) ) ↔ 𝑥 = 𝑋 ) ) |
10 |
|
reu6i |
⊢ ( ( 𝑋 ∈ 𝐵 ∧ ∀ 𝑥 ∈ 𝐵 ( ( ∀ 𝑧 ∈ { 𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋 } 𝑧 ≤ 𝑥 ∧ ∀ 𝑤 ∈ 𝐵 ( ∀ 𝑧 ∈ { 𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋 } 𝑧 ≤ 𝑤 → 𝑥 ≤ 𝑤 ) ) ↔ 𝑥 = 𝑋 ) ) → ∃! 𝑥 ∈ 𝐵 ( ∀ 𝑧 ∈ { 𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋 } 𝑧 ≤ 𝑥 ∧ ∀ 𝑤 ∈ 𝐵 ( ∀ 𝑧 ∈ { 𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋 } 𝑧 ≤ 𝑤 → 𝑥 ≤ 𝑤 ) ) ) |
11 |
5 9 10
|
syl2anc |
⊢ ( 𝜑 → ∃! 𝑥 ∈ 𝐵 ( ∀ 𝑧 ∈ { 𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋 } 𝑧 ≤ 𝑥 ∧ ∀ 𝑤 ∈ 𝐵 ( ∀ 𝑧 ∈ { 𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋 } 𝑧 ≤ 𝑤 → 𝑥 ≤ 𝑤 ) ) ) |
12 |
|
biid |
⊢ ( ( ∀ 𝑧 ∈ { 𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋 } 𝑧 ≤ 𝑥 ∧ ∀ 𝑤 ∈ 𝐵 ( ∀ 𝑧 ∈ { 𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋 } 𝑧 ≤ 𝑤 → 𝑥 ≤ 𝑤 ) ) ↔ ( ∀ 𝑧 ∈ { 𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋 } 𝑧 ≤ 𝑥 ∧ ∀ 𝑤 ∈ 𝐵 ( ∀ 𝑧 ∈ { 𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋 } 𝑧 ≤ 𝑤 → 𝑥 ≤ 𝑤 ) ) ) |
13 |
1 2 3 12 4
|
lubeldm |
⊢ ( 𝜑 → ( { 𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋 } ∈ dom 𝑈 ↔ ( { 𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋 } ⊆ 𝐵 ∧ ∃! 𝑥 ∈ 𝐵 ( ∀ 𝑧 ∈ { 𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋 } 𝑧 ≤ 𝑥 ∧ ∀ 𝑤 ∈ 𝐵 ( ∀ 𝑧 ∈ { 𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋 } 𝑧 ≤ 𝑤 → 𝑥 ≤ 𝑤 ) ) ) ) ) |
14 |
7 11 13
|
mpbir2and |
⊢ ( 𝜑 → { 𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋 } ∈ dom 𝑈 ) |