Metamath Proof Explorer


Theorem lublecl

Description: The set of all elements less than a given element has an LUB. (Contributed by NM, 8-Sep-2018)

Ref Expression
Hypotheses lublecl.b 𝐵 = ( Base ‘ 𝐾 )
lublecl.l = ( le ‘ 𝐾 )
lublecl.u 𝑈 = ( lub ‘ 𝐾 )
lublecl.k ( 𝜑𝐾 ∈ Poset )
lublecl.x ( 𝜑𝑋𝐵 )
Assertion lublecl ( 𝜑 → { 𝑦𝐵𝑦 𝑋 } ∈ dom 𝑈 )

Proof

Step Hyp Ref Expression
1 lublecl.b 𝐵 = ( Base ‘ 𝐾 )
2 lublecl.l = ( le ‘ 𝐾 )
3 lublecl.u 𝑈 = ( lub ‘ 𝐾 )
4 lublecl.k ( 𝜑𝐾 ∈ Poset )
5 lublecl.x ( 𝜑𝑋𝐵 )
6 ssrab2 { 𝑦𝐵𝑦 𝑋 } ⊆ 𝐵
7 6 a1i ( 𝜑 → { 𝑦𝐵𝑦 𝑋 } ⊆ 𝐵 )
8 1 2 3 4 5 lublecllem ( ( 𝜑𝑥𝐵 ) → ( ( ∀ 𝑧 ∈ { 𝑦𝐵𝑦 𝑋 } 𝑧 𝑥 ∧ ∀ 𝑤𝐵 ( ∀ 𝑧 ∈ { 𝑦𝐵𝑦 𝑋 } 𝑧 𝑤𝑥 𝑤 ) ) ↔ 𝑥 = 𝑋 ) )
9 8 ralrimiva ( 𝜑 → ∀ 𝑥𝐵 ( ( ∀ 𝑧 ∈ { 𝑦𝐵𝑦 𝑋 } 𝑧 𝑥 ∧ ∀ 𝑤𝐵 ( ∀ 𝑧 ∈ { 𝑦𝐵𝑦 𝑋 } 𝑧 𝑤𝑥 𝑤 ) ) ↔ 𝑥 = 𝑋 ) )
10 reu6i ( ( 𝑋𝐵 ∧ ∀ 𝑥𝐵 ( ( ∀ 𝑧 ∈ { 𝑦𝐵𝑦 𝑋 } 𝑧 𝑥 ∧ ∀ 𝑤𝐵 ( ∀ 𝑧 ∈ { 𝑦𝐵𝑦 𝑋 } 𝑧 𝑤𝑥 𝑤 ) ) ↔ 𝑥 = 𝑋 ) ) → ∃! 𝑥𝐵 ( ∀ 𝑧 ∈ { 𝑦𝐵𝑦 𝑋 } 𝑧 𝑥 ∧ ∀ 𝑤𝐵 ( ∀ 𝑧 ∈ { 𝑦𝐵𝑦 𝑋 } 𝑧 𝑤𝑥 𝑤 ) ) )
11 5 9 10 syl2anc ( 𝜑 → ∃! 𝑥𝐵 ( ∀ 𝑧 ∈ { 𝑦𝐵𝑦 𝑋 } 𝑧 𝑥 ∧ ∀ 𝑤𝐵 ( ∀ 𝑧 ∈ { 𝑦𝐵𝑦 𝑋 } 𝑧 𝑤𝑥 𝑤 ) ) )
12 biid ( ( ∀ 𝑧 ∈ { 𝑦𝐵𝑦 𝑋 } 𝑧 𝑥 ∧ ∀ 𝑤𝐵 ( ∀ 𝑧 ∈ { 𝑦𝐵𝑦 𝑋 } 𝑧 𝑤𝑥 𝑤 ) ) ↔ ( ∀ 𝑧 ∈ { 𝑦𝐵𝑦 𝑋 } 𝑧 𝑥 ∧ ∀ 𝑤𝐵 ( ∀ 𝑧 ∈ { 𝑦𝐵𝑦 𝑋 } 𝑧 𝑤𝑥 𝑤 ) ) )
13 1 2 3 12 4 lubeldm ( 𝜑 → ( { 𝑦𝐵𝑦 𝑋 } ∈ dom 𝑈 ↔ ( { 𝑦𝐵𝑦 𝑋 } ⊆ 𝐵 ∧ ∃! 𝑥𝐵 ( ∀ 𝑧 ∈ { 𝑦𝐵𝑦 𝑋 } 𝑧 𝑥 ∧ ∀ 𝑤𝐵 ( ∀ 𝑧 ∈ { 𝑦𝐵𝑦 𝑋 } 𝑧 𝑤𝑥 𝑤 ) ) ) ) )
14 7 11 13 mpbir2and ( 𝜑 → { 𝑦𝐵𝑦 𝑋 } ∈ dom 𝑈 )