Step |
Hyp |
Ref |
Expression |
1 |
|
lublecl.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
lublecl.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
3 |
|
lublecl.u |
⊢ 𝑈 = ( lub ‘ 𝐾 ) |
4 |
|
lublecl.k |
⊢ ( 𝜑 → 𝐾 ∈ Poset ) |
5 |
|
lublecl.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
6 |
|
breq1 |
⊢ ( 𝑦 = 𝑧 → ( 𝑦 ≤ 𝑋 ↔ 𝑧 ≤ 𝑋 ) ) |
7 |
6
|
ralrab |
⊢ ( ∀ 𝑧 ∈ { 𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋 } 𝑧 ≤ 𝑥 ↔ ∀ 𝑧 ∈ 𝐵 ( 𝑧 ≤ 𝑋 → 𝑧 ≤ 𝑥 ) ) |
8 |
6
|
ralrab |
⊢ ( ∀ 𝑧 ∈ { 𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋 } 𝑧 ≤ 𝑤 ↔ ∀ 𝑧 ∈ 𝐵 ( 𝑧 ≤ 𝑋 → 𝑧 ≤ 𝑤 ) ) |
9 |
8
|
imbi1i |
⊢ ( ( ∀ 𝑧 ∈ { 𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋 } 𝑧 ≤ 𝑤 → 𝑥 ≤ 𝑤 ) ↔ ( ∀ 𝑧 ∈ 𝐵 ( 𝑧 ≤ 𝑋 → 𝑧 ≤ 𝑤 ) → 𝑥 ≤ 𝑤 ) ) |
10 |
9
|
ralbii |
⊢ ( ∀ 𝑤 ∈ 𝐵 ( ∀ 𝑧 ∈ { 𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋 } 𝑧 ≤ 𝑤 → 𝑥 ≤ 𝑤 ) ↔ ∀ 𝑤 ∈ 𝐵 ( ∀ 𝑧 ∈ 𝐵 ( 𝑧 ≤ 𝑋 → 𝑧 ≤ 𝑤 ) → 𝑥 ≤ 𝑤 ) ) |
11 |
7 10
|
anbi12i |
⊢ ( ( ∀ 𝑧 ∈ { 𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋 } 𝑧 ≤ 𝑥 ∧ ∀ 𝑤 ∈ 𝐵 ( ∀ 𝑧 ∈ { 𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋 } 𝑧 ≤ 𝑤 → 𝑥 ≤ 𝑤 ) ) ↔ ( ∀ 𝑧 ∈ 𝐵 ( 𝑧 ≤ 𝑋 → 𝑧 ≤ 𝑥 ) ∧ ∀ 𝑤 ∈ 𝐵 ( ∀ 𝑧 ∈ 𝐵 ( 𝑧 ≤ 𝑋 → 𝑧 ≤ 𝑤 ) → 𝑥 ≤ 𝑤 ) ) ) |
12 |
1 2
|
posref |
⊢ ( ( 𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ) → 𝑋 ≤ 𝑋 ) |
13 |
4 5 12
|
syl2anc |
⊢ ( 𝜑 → 𝑋 ≤ 𝑋 ) |
14 |
|
breq1 |
⊢ ( 𝑧 = 𝑋 → ( 𝑧 ≤ 𝑋 ↔ 𝑋 ≤ 𝑋 ) ) |
15 |
|
breq1 |
⊢ ( 𝑧 = 𝑋 → ( 𝑧 ≤ 𝑥 ↔ 𝑋 ≤ 𝑥 ) ) |
16 |
14 15
|
imbi12d |
⊢ ( 𝑧 = 𝑋 → ( ( 𝑧 ≤ 𝑋 → 𝑧 ≤ 𝑥 ) ↔ ( 𝑋 ≤ 𝑋 → 𝑋 ≤ 𝑥 ) ) ) |
17 |
16
|
rspcva |
⊢ ( ( 𝑋 ∈ 𝐵 ∧ ∀ 𝑧 ∈ 𝐵 ( 𝑧 ≤ 𝑋 → 𝑧 ≤ 𝑥 ) ) → ( 𝑋 ≤ 𝑋 → 𝑋 ≤ 𝑥 ) ) |
18 |
13 17
|
syl5com |
⊢ ( 𝜑 → ( ( 𝑋 ∈ 𝐵 ∧ ∀ 𝑧 ∈ 𝐵 ( 𝑧 ≤ 𝑋 → 𝑧 ≤ 𝑥 ) ) → 𝑋 ≤ 𝑥 ) ) |
19 |
5 18
|
mpand |
⊢ ( 𝜑 → ( ∀ 𝑧 ∈ 𝐵 ( 𝑧 ≤ 𝑋 → 𝑧 ≤ 𝑥 ) → 𝑋 ≤ 𝑥 ) ) |
20 |
19
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( ∀ 𝑧 ∈ 𝐵 ( 𝑧 ≤ 𝑋 → 𝑧 ≤ 𝑥 ) → 𝑋 ≤ 𝑥 ) ) |
21 |
|
idd |
⊢ ( 𝑧 ∈ 𝐵 → ( 𝑧 ≤ 𝑋 → 𝑧 ≤ 𝑋 ) ) |
22 |
21
|
rgen |
⊢ ∀ 𝑧 ∈ 𝐵 ( 𝑧 ≤ 𝑋 → 𝑧 ≤ 𝑋 ) |
23 |
|
breq2 |
⊢ ( 𝑤 = 𝑋 → ( 𝑧 ≤ 𝑤 ↔ 𝑧 ≤ 𝑋 ) ) |
24 |
23
|
imbi2d |
⊢ ( 𝑤 = 𝑋 → ( ( 𝑧 ≤ 𝑋 → 𝑧 ≤ 𝑤 ) ↔ ( 𝑧 ≤ 𝑋 → 𝑧 ≤ 𝑋 ) ) ) |
25 |
24
|
ralbidv |
⊢ ( 𝑤 = 𝑋 → ( ∀ 𝑧 ∈ 𝐵 ( 𝑧 ≤ 𝑋 → 𝑧 ≤ 𝑤 ) ↔ ∀ 𝑧 ∈ 𝐵 ( 𝑧 ≤ 𝑋 → 𝑧 ≤ 𝑋 ) ) ) |
26 |
|
breq2 |
⊢ ( 𝑤 = 𝑋 → ( 𝑥 ≤ 𝑤 ↔ 𝑥 ≤ 𝑋 ) ) |
27 |
25 26
|
imbi12d |
⊢ ( 𝑤 = 𝑋 → ( ( ∀ 𝑧 ∈ 𝐵 ( 𝑧 ≤ 𝑋 → 𝑧 ≤ 𝑤 ) → 𝑥 ≤ 𝑤 ) ↔ ( ∀ 𝑧 ∈ 𝐵 ( 𝑧 ≤ 𝑋 → 𝑧 ≤ 𝑋 ) → 𝑥 ≤ 𝑋 ) ) ) |
28 |
27
|
rspcv |
⊢ ( 𝑋 ∈ 𝐵 → ( ∀ 𝑤 ∈ 𝐵 ( ∀ 𝑧 ∈ 𝐵 ( 𝑧 ≤ 𝑋 → 𝑧 ≤ 𝑤 ) → 𝑥 ≤ 𝑤 ) → ( ∀ 𝑧 ∈ 𝐵 ( 𝑧 ≤ 𝑋 → 𝑧 ≤ 𝑋 ) → 𝑥 ≤ 𝑋 ) ) ) |
29 |
5 28
|
syl |
⊢ ( 𝜑 → ( ∀ 𝑤 ∈ 𝐵 ( ∀ 𝑧 ∈ 𝐵 ( 𝑧 ≤ 𝑋 → 𝑧 ≤ 𝑤 ) → 𝑥 ≤ 𝑤 ) → ( ∀ 𝑧 ∈ 𝐵 ( 𝑧 ≤ 𝑋 → 𝑧 ≤ 𝑋 ) → 𝑥 ≤ 𝑋 ) ) ) |
30 |
22 29
|
mpii |
⊢ ( 𝜑 → ( ∀ 𝑤 ∈ 𝐵 ( ∀ 𝑧 ∈ 𝐵 ( 𝑧 ≤ 𝑋 → 𝑧 ≤ 𝑤 ) → 𝑥 ≤ 𝑤 ) → 𝑥 ≤ 𝑋 ) ) |
31 |
30
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( ∀ 𝑤 ∈ 𝐵 ( ∀ 𝑧 ∈ 𝐵 ( 𝑧 ≤ 𝑋 → 𝑧 ≤ 𝑤 ) → 𝑥 ≤ 𝑤 ) → 𝑥 ≤ 𝑋 ) ) |
32 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝐾 ∈ Poset ) |
33 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝑥 ∈ 𝐵 ) |
34 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝑋 ∈ 𝐵 ) |
35 |
1 2
|
posasymb |
⊢ ( ( 𝐾 ∈ Poset ∧ 𝑥 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) → ( ( 𝑥 ≤ 𝑋 ∧ 𝑋 ≤ 𝑥 ) ↔ 𝑥 = 𝑋 ) ) |
36 |
32 33 34 35
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( ( 𝑥 ≤ 𝑋 ∧ 𝑋 ≤ 𝑥 ) ↔ 𝑥 = 𝑋 ) ) |
37 |
36
|
biimpd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( ( 𝑥 ≤ 𝑋 ∧ 𝑋 ≤ 𝑥 ) → 𝑥 = 𝑋 ) ) |
38 |
37
|
ancomsd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( ( 𝑋 ≤ 𝑥 ∧ 𝑥 ≤ 𝑋 ) → 𝑥 = 𝑋 ) ) |
39 |
20 31 38
|
syl2and |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( ( ∀ 𝑧 ∈ 𝐵 ( 𝑧 ≤ 𝑋 → 𝑧 ≤ 𝑥 ) ∧ ∀ 𝑤 ∈ 𝐵 ( ∀ 𝑧 ∈ 𝐵 ( 𝑧 ≤ 𝑋 → 𝑧 ≤ 𝑤 ) → 𝑥 ≤ 𝑤 ) ) → 𝑥 = 𝑋 ) ) |
40 |
|
breq2 |
⊢ ( 𝑥 = 𝑋 → ( 𝑧 ≤ 𝑥 ↔ 𝑧 ≤ 𝑋 ) ) |
41 |
40
|
biimprd |
⊢ ( 𝑥 = 𝑋 → ( 𝑧 ≤ 𝑋 → 𝑧 ≤ 𝑥 ) ) |
42 |
41
|
ralrimivw |
⊢ ( 𝑥 = 𝑋 → ∀ 𝑧 ∈ 𝐵 ( 𝑧 ≤ 𝑋 → 𝑧 ≤ 𝑥 ) ) |
43 |
42
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑥 = 𝑋 ) → ∀ 𝑧 ∈ 𝐵 ( 𝑧 ≤ 𝑋 → 𝑧 ≤ 𝑥 ) ) |
44 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝑋 ) → 𝑋 ∈ 𝐵 ) |
45 |
|
breq1 |
⊢ ( 𝑧 = 𝑋 → ( 𝑧 ≤ 𝑤 ↔ 𝑋 ≤ 𝑤 ) ) |
46 |
14 45
|
imbi12d |
⊢ ( 𝑧 = 𝑋 → ( ( 𝑧 ≤ 𝑋 → 𝑧 ≤ 𝑤 ) ↔ ( 𝑋 ≤ 𝑋 → 𝑋 ≤ 𝑤 ) ) ) |
47 |
46
|
rspcva |
⊢ ( ( 𝑋 ∈ 𝐵 ∧ ∀ 𝑧 ∈ 𝐵 ( 𝑧 ≤ 𝑋 → 𝑧 ≤ 𝑤 ) ) → ( 𝑋 ≤ 𝑋 → 𝑋 ≤ 𝑤 ) ) |
48 |
|
pm5.5 |
⊢ ( 𝑋 ≤ 𝑋 → ( ( 𝑋 ≤ 𝑋 → 𝑋 ≤ 𝑤 ) ↔ 𝑋 ≤ 𝑤 ) ) |
49 |
13 48
|
syl |
⊢ ( 𝜑 → ( ( 𝑋 ≤ 𝑋 → 𝑋 ≤ 𝑤 ) ↔ 𝑋 ≤ 𝑤 ) ) |
50 |
|
breq1 |
⊢ ( 𝑥 = 𝑋 → ( 𝑥 ≤ 𝑤 ↔ 𝑋 ≤ 𝑤 ) ) |
51 |
50
|
bicomd |
⊢ ( 𝑥 = 𝑋 → ( 𝑋 ≤ 𝑤 ↔ 𝑥 ≤ 𝑤 ) ) |
52 |
49 51
|
sylan9bb |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝑋 ) → ( ( 𝑋 ≤ 𝑋 → 𝑋 ≤ 𝑤 ) ↔ 𝑥 ≤ 𝑤 ) ) |
53 |
47 52
|
syl5ib |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝑋 ) → ( ( 𝑋 ∈ 𝐵 ∧ ∀ 𝑧 ∈ 𝐵 ( 𝑧 ≤ 𝑋 → 𝑧 ≤ 𝑤 ) ) → 𝑥 ≤ 𝑤 ) ) |
54 |
44 53
|
mpand |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝑋 ) → ( ∀ 𝑧 ∈ 𝐵 ( 𝑧 ≤ 𝑋 → 𝑧 ≤ 𝑤 ) → 𝑥 ≤ 𝑤 ) ) |
55 |
54
|
ralrimivw |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝑋 ) → ∀ 𝑤 ∈ 𝐵 ( ∀ 𝑧 ∈ 𝐵 ( 𝑧 ≤ 𝑋 → 𝑧 ≤ 𝑤 ) → 𝑥 ≤ 𝑤 ) ) |
56 |
55
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑥 = 𝑋 ) → ∀ 𝑤 ∈ 𝐵 ( ∀ 𝑧 ∈ 𝐵 ( 𝑧 ≤ 𝑋 → 𝑧 ≤ 𝑤 ) → 𝑥 ≤ 𝑤 ) ) |
57 |
43 56
|
jca |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑥 = 𝑋 ) → ( ∀ 𝑧 ∈ 𝐵 ( 𝑧 ≤ 𝑋 → 𝑧 ≤ 𝑥 ) ∧ ∀ 𝑤 ∈ 𝐵 ( ∀ 𝑧 ∈ 𝐵 ( 𝑧 ≤ 𝑋 → 𝑧 ≤ 𝑤 ) → 𝑥 ≤ 𝑤 ) ) ) |
58 |
57
|
ex |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( 𝑥 = 𝑋 → ( ∀ 𝑧 ∈ 𝐵 ( 𝑧 ≤ 𝑋 → 𝑧 ≤ 𝑥 ) ∧ ∀ 𝑤 ∈ 𝐵 ( ∀ 𝑧 ∈ 𝐵 ( 𝑧 ≤ 𝑋 → 𝑧 ≤ 𝑤 ) → 𝑥 ≤ 𝑤 ) ) ) ) |
59 |
39 58
|
impbid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( ( ∀ 𝑧 ∈ 𝐵 ( 𝑧 ≤ 𝑋 → 𝑧 ≤ 𝑥 ) ∧ ∀ 𝑤 ∈ 𝐵 ( ∀ 𝑧 ∈ 𝐵 ( 𝑧 ≤ 𝑋 → 𝑧 ≤ 𝑤 ) → 𝑥 ≤ 𝑤 ) ) ↔ 𝑥 = 𝑋 ) ) |
60 |
11 59
|
syl5bb |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( ( ∀ 𝑧 ∈ { 𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋 } 𝑧 ≤ 𝑥 ∧ ∀ 𝑤 ∈ 𝐵 ( ∀ 𝑧 ∈ { 𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋 } 𝑧 ≤ 𝑤 → 𝑥 ≤ 𝑤 ) ) ↔ 𝑥 = 𝑋 ) ) |