Metamath Proof Explorer


Theorem lublem

Description: Lemma for the least upper bound properties in a complete lattice. (Contributed by NM, 19-Oct-2011)

Ref Expression
Hypotheses lublem.b 𝐵 = ( Base ‘ 𝐾 )
lublem.l = ( le ‘ 𝐾 )
lublem.u 𝑈 = ( lub ‘ 𝐾 )
Assertion lublem ( ( 𝐾 ∈ CLat ∧ 𝑆𝐵 ) → ( ∀ 𝑦𝑆 𝑦 ( 𝑈𝑆 ) ∧ ∀ 𝑧𝐵 ( ∀ 𝑦𝑆 𝑦 𝑧 → ( 𝑈𝑆 ) 𝑧 ) ) )

Proof

Step Hyp Ref Expression
1 lublem.b 𝐵 = ( Base ‘ 𝐾 )
2 lublem.l = ( le ‘ 𝐾 )
3 lublem.u 𝑈 = ( lub ‘ 𝐾 )
4 simpl ( ( 𝐾 ∈ CLat ∧ 𝑆𝐵 ) → 𝐾 ∈ CLat )
5 1 3 clatlubcl2 ( ( 𝐾 ∈ CLat ∧ 𝑆𝐵 ) → 𝑆 ∈ dom 𝑈 )
6 1 2 3 4 5 lubprop ( ( 𝐾 ∈ CLat ∧ 𝑆𝐵 ) → ( ∀ 𝑦𝑆 𝑦 ( 𝑈𝑆 ) ∧ ∀ 𝑧𝐵 ( ∀ 𝑦𝑆 𝑦 𝑧 → ( 𝑈𝑆 ) 𝑧 ) ) )