Step |
Hyp |
Ref |
Expression |
1 |
|
lubpr.k |
⊢ ( 𝜑 → 𝐾 ∈ Poset ) |
2 |
|
lubpr.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
3 |
|
lubpr.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
4 |
|
lubpr.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
5 |
|
lubpr.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
6 |
|
lubpr.c |
⊢ ( 𝜑 → 𝑋 ≤ 𝑌 ) |
7 |
|
lubpr.s |
⊢ ( 𝜑 → 𝑆 = { 𝑋 , 𝑌 } ) |
8 |
|
lubpr.u |
⊢ 𝑈 = ( lub ‘ 𝐾 ) |
9 |
|
breq1 |
⊢ ( 𝑧 = 𝑋 → ( 𝑧 ≤ 𝑌 ↔ 𝑋 ≤ 𝑌 ) ) |
10 |
9 3 6
|
elrabd |
⊢ ( 𝜑 → 𝑋 ∈ { 𝑧 ∈ 𝐵 ∣ 𝑧 ≤ 𝑌 } ) |
11 |
|
breq1 |
⊢ ( 𝑧 = 𝑌 → ( 𝑧 ≤ 𝑌 ↔ 𝑌 ≤ 𝑌 ) ) |
12 |
2 5
|
posref |
⊢ ( ( 𝐾 ∈ Poset ∧ 𝑌 ∈ 𝐵 ) → 𝑌 ≤ 𝑌 ) |
13 |
1 4 12
|
syl2anc |
⊢ ( 𝜑 → 𝑌 ≤ 𝑌 ) |
14 |
11 4 13
|
elrabd |
⊢ ( 𝜑 → 𝑌 ∈ { 𝑧 ∈ 𝐵 ∣ 𝑧 ≤ 𝑌 } ) |
15 |
10 14
|
prssd |
⊢ ( 𝜑 → { 𝑋 , 𝑌 } ⊆ { 𝑧 ∈ 𝐵 ∣ 𝑧 ≤ 𝑌 } ) |
16 |
2 5 8 1 4
|
lublecl |
⊢ ( 𝜑 → { 𝑧 ∈ 𝐵 ∣ 𝑧 ≤ 𝑌 } ∈ dom 𝑈 ) |
17 |
2 5 8 1 4
|
lubid |
⊢ ( 𝜑 → ( 𝑈 ‘ { 𝑧 ∈ 𝐵 ∣ 𝑧 ≤ 𝑌 } ) = 𝑌 ) |
18 |
|
prid2g |
⊢ ( 𝑌 ∈ 𝐵 → 𝑌 ∈ { 𝑋 , 𝑌 } ) |
19 |
4 18
|
syl |
⊢ ( 𝜑 → 𝑌 ∈ { 𝑋 , 𝑌 } ) |
20 |
17 19
|
eqeltrd |
⊢ ( 𝜑 → ( 𝑈 ‘ { 𝑧 ∈ 𝐵 ∣ 𝑧 ≤ 𝑌 } ) ∈ { 𝑋 , 𝑌 } ) |
21 |
1 15 8 16 20
|
lubsscl |
⊢ ( 𝜑 → ( { 𝑋 , 𝑌 } ∈ dom 𝑈 ∧ ( 𝑈 ‘ { 𝑋 , 𝑌 } ) = ( 𝑈 ‘ { 𝑧 ∈ 𝐵 ∣ 𝑧 ≤ 𝑌 } ) ) ) |
22 |
21
|
simpld |
⊢ ( 𝜑 → { 𝑋 , 𝑌 } ∈ dom 𝑈 ) |
23 |
7 22
|
eqeltrd |
⊢ ( 𝜑 → 𝑆 ∈ dom 𝑈 ) |
24 |
7
|
fveq2d |
⊢ ( 𝜑 → ( 𝑈 ‘ 𝑆 ) = ( 𝑈 ‘ { 𝑋 , 𝑌 } ) ) |
25 |
21
|
simprd |
⊢ ( 𝜑 → ( 𝑈 ‘ { 𝑋 , 𝑌 } ) = ( 𝑈 ‘ { 𝑧 ∈ 𝐵 ∣ 𝑧 ≤ 𝑌 } ) ) |
26 |
24 25 17
|
3eqtrd |
⊢ ( 𝜑 → ( 𝑈 ‘ 𝑆 ) = 𝑌 ) |
27 |
23 26
|
jca |
⊢ ( 𝜑 → ( 𝑆 ∈ dom 𝑈 ∧ ( 𝑈 ‘ 𝑆 ) = 𝑌 ) ) |