| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lubprop.b | ⊢ 𝐵  =  ( Base ‘ 𝐾 ) | 
						
							| 2 |  | lubprop.l | ⊢  ≤   =  ( le ‘ 𝐾 ) | 
						
							| 3 |  | lubprop.u | ⊢ 𝑈  =  ( lub ‘ 𝐾 ) | 
						
							| 4 |  | lubprop.k | ⊢ ( 𝜑  →  𝐾  ∈  𝑉 ) | 
						
							| 5 |  | lubprop.s | ⊢ ( 𝜑  →  𝑆  ∈  dom  𝑈 ) | 
						
							| 6 |  | biid | ⊢ ( ( ∀ 𝑦  ∈  𝑆 𝑦  ≤  𝑥  ∧  ∀ 𝑧  ∈  𝐵 ( ∀ 𝑦  ∈  𝑆 𝑦  ≤  𝑧  →  𝑥  ≤  𝑧 ) )  ↔  ( ∀ 𝑦  ∈  𝑆 𝑦  ≤  𝑥  ∧  ∀ 𝑧  ∈  𝐵 ( ∀ 𝑦  ∈  𝑆 𝑦  ≤  𝑧  →  𝑥  ≤  𝑧 ) ) ) | 
						
							| 7 | 1 2 3 4 5 | lubelss | ⊢ ( 𝜑  →  𝑆  ⊆  𝐵 ) | 
						
							| 8 | 1 2 3 6 4 7 | lubval | ⊢ ( 𝜑  →  ( 𝑈 ‘ 𝑆 )  =  ( ℩ 𝑥  ∈  𝐵 ( ∀ 𝑦  ∈  𝑆 𝑦  ≤  𝑥  ∧  ∀ 𝑧  ∈  𝐵 ( ∀ 𝑦  ∈  𝑆 𝑦  ≤  𝑧  →  𝑥  ≤  𝑧 ) ) ) ) | 
						
							| 9 | 8 | eqcomd | ⊢ ( 𝜑  →  ( ℩ 𝑥  ∈  𝐵 ( ∀ 𝑦  ∈  𝑆 𝑦  ≤  𝑥  ∧  ∀ 𝑧  ∈  𝐵 ( ∀ 𝑦  ∈  𝑆 𝑦  ≤  𝑧  →  𝑥  ≤  𝑧 ) ) )  =  ( 𝑈 ‘ 𝑆 ) ) | 
						
							| 10 | 1 3 4 5 | lubcl | ⊢ ( 𝜑  →  ( 𝑈 ‘ 𝑆 )  ∈  𝐵 ) | 
						
							| 11 | 1 2 3 6 4 5 | lubeu | ⊢ ( 𝜑  →  ∃! 𝑥  ∈  𝐵 ( ∀ 𝑦  ∈  𝑆 𝑦  ≤  𝑥  ∧  ∀ 𝑧  ∈  𝐵 ( ∀ 𝑦  ∈  𝑆 𝑦  ≤  𝑧  →  𝑥  ≤  𝑧 ) ) ) | 
						
							| 12 |  | breq2 | ⊢ ( 𝑥  =  ( 𝑈 ‘ 𝑆 )  →  ( 𝑦  ≤  𝑥  ↔  𝑦  ≤  ( 𝑈 ‘ 𝑆 ) ) ) | 
						
							| 13 | 12 | ralbidv | ⊢ ( 𝑥  =  ( 𝑈 ‘ 𝑆 )  →  ( ∀ 𝑦  ∈  𝑆 𝑦  ≤  𝑥  ↔  ∀ 𝑦  ∈  𝑆 𝑦  ≤  ( 𝑈 ‘ 𝑆 ) ) ) | 
						
							| 14 |  | breq1 | ⊢ ( 𝑥  =  ( 𝑈 ‘ 𝑆 )  →  ( 𝑥  ≤  𝑧  ↔  ( 𝑈 ‘ 𝑆 )  ≤  𝑧 ) ) | 
						
							| 15 | 14 | imbi2d | ⊢ ( 𝑥  =  ( 𝑈 ‘ 𝑆 )  →  ( ( ∀ 𝑦  ∈  𝑆 𝑦  ≤  𝑧  →  𝑥  ≤  𝑧 )  ↔  ( ∀ 𝑦  ∈  𝑆 𝑦  ≤  𝑧  →  ( 𝑈 ‘ 𝑆 )  ≤  𝑧 ) ) ) | 
						
							| 16 | 15 | ralbidv | ⊢ ( 𝑥  =  ( 𝑈 ‘ 𝑆 )  →  ( ∀ 𝑧  ∈  𝐵 ( ∀ 𝑦  ∈  𝑆 𝑦  ≤  𝑧  →  𝑥  ≤  𝑧 )  ↔  ∀ 𝑧  ∈  𝐵 ( ∀ 𝑦  ∈  𝑆 𝑦  ≤  𝑧  →  ( 𝑈 ‘ 𝑆 )  ≤  𝑧 ) ) ) | 
						
							| 17 | 13 16 | anbi12d | ⊢ ( 𝑥  =  ( 𝑈 ‘ 𝑆 )  →  ( ( ∀ 𝑦  ∈  𝑆 𝑦  ≤  𝑥  ∧  ∀ 𝑧  ∈  𝐵 ( ∀ 𝑦  ∈  𝑆 𝑦  ≤  𝑧  →  𝑥  ≤  𝑧 ) )  ↔  ( ∀ 𝑦  ∈  𝑆 𝑦  ≤  ( 𝑈 ‘ 𝑆 )  ∧  ∀ 𝑧  ∈  𝐵 ( ∀ 𝑦  ∈  𝑆 𝑦  ≤  𝑧  →  ( 𝑈 ‘ 𝑆 )  ≤  𝑧 ) ) ) ) | 
						
							| 18 | 17 | riota2 | ⊢ ( ( ( 𝑈 ‘ 𝑆 )  ∈  𝐵  ∧  ∃! 𝑥  ∈  𝐵 ( ∀ 𝑦  ∈  𝑆 𝑦  ≤  𝑥  ∧  ∀ 𝑧  ∈  𝐵 ( ∀ 𝑦  ∈  𝑆 𝑦  ≤  𝑧  →  𝑥  ≤  𝑧 ) ) )  →  ( ( ∀ 𝑦  ∈  𝑆 𝑦  ≤  ( 𝑈 ‘ 𝑆 )  ∧  ∀ 𝑧  ∈  𝐵 ( ∀ 𝑦  ∈  𝑆 𝑦  ≤  𝑧  →  ( 𝑈 ‘ 𝑆 )  ≤  𝑧 ) )  ↔  ( ℩ 𝑥  ∈  𝐵 ( ∀ 𝑦  ∈  𝑆 𝑦  ≤  𝑥  ∧  ∀ 𝑧  ∈  𝐵 ( ∀ 𝑦  ∈  𝑆 𝑦  ≤  𝑧  →  𝑥  ≤  𝑧 ) ) )  =  ( 𝑈 ‘ 𝑆 ) ) ) | 
						
							| 19 | 10 11 18 | syl2anc | ⊢ ( 𝜑  →  ( ( ∀ 𝑦  ∈  𝑆 𝑦  ≤  ( 𝑈 ‘ 𝑆 )  ∧  ∀ 𝑧  ∈  𝐵 ( ∀ 𝑦  ∈  𝑆 𝑦  ≤  𝑧  →  ( 𝑈 ‘ 𝑆 )  ≤  𝑧 ) )  ↔  ( ℩ 𝑥  ∈  𝐵 ( ∀ 𝑦  ∈  𝑆 𝑦  ≤  𝑥  ∧  ∀ 𝑧  ∈  𝐵 ( ∀ 𝑦  ∈  𝑆 𝑦  ≤  𝑧  →  𝑥  ≤  𝑧 ) ) )  =  ( 𝑈 ‘ 𝑆 ) ) ) | 
						
							| 20 | 9 19 | mpbird | ⊢ ( 𝜑  →  ( ∀ 𝑦  ∈  𝑆 𝑦  ≤  ( 𝑈 ‘ 𝑆 )  ∧  ∀ 𝑧  ∈  𝐵 ( ∀ 𝑦  ∈  𝑆 𝑦  ≤  𝑧  →  ( 𝑈 ‘ 𝑆 )  ≤  𝑧 ) ) ) |