| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							lubsn.b | 
							⊢ 𝐵  =  ( Base ‘ 𝐾 )  | 
						
						
							| 2 | 
							
								
							 | 
							lubsn.u | 
							⊢ 𝑈  =  ( lub ‘ 𝐾 )  | 
						
						
							| 3 | 
							
								
							 | 
							dfsn2 | 
							⊢ { 𝑋 }  =  { 𝑋 ,  𝑋 }  | 
						
						
							| 4 | 
							
								3
							 | 
							fveq2i | 
							⊢ ( 𝑈 ‘ { 𝑋 } )  =  ( 𝑈 ‘ { 𝑋 ,  𝑋 } )  | 
						
						
							| 5 | 
							
								
							 | 
							eqid | 
							⊢ ( join ‘ 𝐾 )  =  ( join ‘ 𝐾 )  | 
						
						
							| 6 | 
							
								
							 | 
							simpl | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  𝑋  ∈  𝐵 )  →  𝐾  ∈  Lat )  | 
						
						
							| 7 | 
							
								
							 | 
							simpr | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  𝑋  ∈  𝐵 )  →  𝑋  ∈  𝐵 )  | 
						
						
							| 8 | 
							
								2 5 6 7 7
							 | 
							joinval | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  𝑋  ∈  𝐵 )  →  ( 𝑋 ( join ‘ 𝐾 ) 𝑋 )  =  ( 𝑈 ‘ { 𝑋 ,  𝑋 } ) )  | 
						
						
							| 9 | 
							
								4 8
							 | 
							eqtr4id | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  𝑋  ∈  𝐵 )  →  ( 𝑈 ‘ { 𝑋 } )  =  ( 𝑋 ( join ‘ 𝐾 ) 𝑋 ) )  | 
						
						
							| 10 | 
							
								1 5
							 | 
							latjidm | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  𝑋  ∈  𝐵 )  →  ( 𝑋 ( join ‘ 𝐾 ) 𝑋 )  =  𝑋 )  | 
						
						
							| 11 | 
							
								9 10
							 | 
							eqtrd | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  𝑋  ∈  𝐵 )  →  ( 𝑈 ‘ { 𝑋 } )  =  𝑋 )  |