Step |
Hyp |
Ref |
Expression |
1 |
|
lubsn.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
lubsn.u |
⊢ 𝑈 = ( lub ‘ 𝐾 ) |
3 |
|
dfsn2 |
⊢ { 𝑋 } = { 𝑋 , 𝑋 } |
4 |
3
|
fveq2i |
⊢ ( 𝑈 ‘ { 𝑋 } ) = ( 𝑈 ‘ { 𝑋 , 𝑋 } ) |
5 |
|
eqid |
⊢ ( join ‘ 𝐾 ) = ( join ‘ 𝐾 ) |
6 |
|
simpl |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ) → 𝐾 ∈ Lat ) |
7 |
|
simpr |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ) → 𝑋 ∈ 𝐵 ) |
8 |
2 5 6 7 7
|
joinval |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ) → ( 𝑋 ( join ‘ 𝐾 ) 𝑋 ) = ( 𝑈 ‘ { 𝑋 , 𝑋 } ) ) |
9 |
4 8
|
eqtr4id |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ) → ( 𝑈 ‘ { 𝑋 } ) = ( 𝑋 ( join ‘ 𝐾 ) 𝑋 ) ) |
10 |
1 5
|
latjidm |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ) → ( 𝑋 ( join ‘ 𝐾 ) 𝑋 ) = 𝑋 ) |
11 |
9 10
|
eqtrd |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ) → ( 𝑈 ‘ { 𝑋 } ) = 𝑋 ) |