| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							lublem.b | 
							⊢ 𝐵  =  ( Base ‘ 𝐾 )  | 
						
						
							| 2 | 
							
								
							 | 
							lublem.l | 
							⊢  ≤   =  ( le ‘ 𝐾 )  | 
						
						
							| 3 | 
							
								
							 | 
							lublem.u | 
							⊢ 𝑈  =  ( lub ‘ 𝐾 )  | 
						
						
							| 4 | 
							
								
							 | 
							simp1 | 
							⊢ ( ( 𝐾  ∈  CLat  ∧  𝑇  ⊆  𝐵  ∧  𝑆  ⊆  𝑇 )  →  𝐾  ∈  CLat )  | 
						
						
							| 5 | 
							
								
							 | 
							sstr2 | 
							⊢ ( 𝑆  ⊆  𝑇  →  ( 𝑇  ⊆  𝐵  →  𝑆  ⊆  𝐵 ) )  | 
						
						
							| 6 | 
							
								5
							 | 
							impcom | 
							⊢ ( ( 𝑇  ⊆  𝐵  ∧  𝑆  ⊆  𝑇 )  →  𝑆  ⊆  𝐵 )  | 
						
						
							| 7 | 
							
								6
							 | 
							3adant1 | 
							⊢ ( ( 𝐾  ∈  CLat  ∧  𝑇  ⊆  𝐵  ∧  𝑆  ⊆  𝑇 )  →  𝑆  ⊆  𝐵 )  | 
						
						
							| 8 | 
							
								1 3
							 | 
							clatlubcl | 
							⊢ ( ( 𝐾  ∈  CLat  ∧  𝑇  ⊆  𝐵 )  →  ( 𝑈 ‘ 𝑇 )  ∈  𝐵 )  | 
						
						
							| 9 | 
							
								8
							 | 
							3adant3 | 
							⊢ ( ( 𝐾  ∈  CLat  ∧  𝑇  ⊆  𝐵  ∧  𝑆  ⊆  𝑇 )  →  ( 𝑈 ‘ 𝑇 )  ∈  𝐵 )  | 
						
						
							| 10 | 
							
								4 7 9
							 | 
							3jca | 
							⊢ ( ( 𝐾  ∈  CLat  ∧  𝑇  ⊆  𝐵  ∧  𝑆  ⊆  𝑇 )  →  ( 𝐾  ∈  CLat  ∧  𝑆  ⊆  𝐵  ∧  ( 𝑈 ‘ 𝑇 )  ∈  𝐵 ) )  | 
						
						
							| 11 | 
							
								
							 | 
							simpl1 | 
							⊢ ( ( ( 𝐾  ∈  CLat  ∧  𝑇  ⊆  𝐵  ∧  𝑆  ⊆  𝑇 )  ∧  𝑦  ∈  𝑆 )  →  𝐾  ∈  CLat )  | 
						
						
							| 12 | 
							
								
							 | 
							simpl2 | 
							⊢ ( ( ( 𝐾  ∈  CLat  ∧  𝑇  ⊆  𝐵  ∧  𝑆  ⊆  𝑇 )  ∧  𝑦  ∈  𝑆 )  →  𝑇  ⊆  𝐵 )  | 
						
						
							| 13 | 
							
								
							 | 
							ssel2 | 
							⊢ ( ( 𝑆  ⊆  𝑇  ∧  𝑦  ∈  𝑆 )  →  𝑦  ∈  𝑇 )  | 
						
						
							| 14 | 
							
								13
							 | 
							3ad2antl3 | 
							⊢ ( ( ( 𝐾  ∈  CLat  ∧  𝑇  ⊆  𝐵  ∧  𝑆  ⊆  𝑇 )  ∧  𝑦  ∈  𝑆 )  →  𝑦  ∈  𝑇 )  | 
						
						
							| 15 | 
							
								1 2 3
							 | 
							lubub | 
							⊢ ( ( 𝐾  ∈  CLat  ∧  𝑇  ⊆  𝐵  ∧  𝑦  ∈  𝑇 )  →  𝑦  ≤  ( 𝑈 ‘ 𝑇 ) )  | 
						
						
							| 16 | 
							
								11 12 14 15
							 | 
							syl3anc | 
							⊢ ( ( ( 𝐾  ∈  CLat  ∧  𝑇  ⊆  𝐵  ∧  𝑆  ⊆  𝑇 )  ∧  𝑦  ∈  𝑆 )  →  𝑦  ≤  ( 𝑈 ‘ 𝑇 ) )  | 
						
						
							| 17 | 
							
								16
							 | 
							ralrimiva | 
							⊢ ( ( 𝐾  ∈  CLat  ∧  𝑇  ⊆  𝐵  ∧  𝑆  ⊆  𝑇 )  →  ∀ 𝑦  ∈  𝑆 𝑦  ≤  ( 𝑈 ‘ 𝑇 ) )  | 
						
						
							| 18 | 
							
								1 2 3
							 | 
							lubl | 
							⊢ ( ( 𝐾  ∈  CLat  ∧  𝑆  ⊆  𝐵  ∧  ( 𝑈 ‘ 𝑇 )  ∈  𝐵 )  →  ( ∀ 𝑦  ∈  𝑆 𝑦  ≤  ( 𝑈 ‘ 𝑇 )  →  ( 𝑈 ‘ 𝑆 )  ≤  ( 𝑈 ‘ 𝑇 ) ) )  | 
						
						
							| 19 | 
							
								10 17 18
							 | 
							sylc | 
							⊢ ( ( 𝐾  ∈  CLat  ∧  𝑇  ⊆  𝐵  ∧  𝑆  ⊆  𝑇 )  →  ( 𝑈 ‘ 𝑆 )  ≤  ( 𝑈 ‘ 𝑇 ) )  |