Metamath Proof Explorer


Theorem lubss

Description: Subset law for least upper bounds. ( chsupss analog.) (Contributed by NM, 20-Oct-2011)

Ref Expression
Hypotheses lublem.b 𝐵 = ( Base ‘ 𝐾 )
lublem.l = ( le ‘ 𝐾 )
lublem.u 𝑈 = ( lub ‘ 𝐾 )
Assertion lubss ( ( 𝐾 ∈ CLat ∧ 𝑇𝐵𝑆𝑇 ) → ( 𝑈𝑆 ) ( 𝑈𝑇 ) )

Proof

Step Hyp Ref Expression
1 lublem.b 𝐵 = ( Base ‘ 𝐾 )
2 lublem.l = ( le ‘ 𝐾 )
3 lublem.u 𝑈 = ( lub ‘ 𝐾 )
4 simp1 ( ( 𝐾 ∈ CLat ∧ 𝑇𝐵𝑆𝑇 ) → 𝐾 ∈ CLat )
5 sstr2 ( 𝑆𝑇 → ( 𝑇𝐵𝑆𝐵 ) )
6 5 impcom ( ( 𝑇𝐵𝑆𝑇 ) → 𝑆𝐵 )
7 6 3adant1 ( ( 𝐾 ∈ CLat ∧ 𝑇𝐵𝑆𝑇 ) → 𝑆𝐵 )
8 1 3 clatlubcl ( ( 𝐾 ∈ CLat ∧ 𝑇𝐵 ) → ( 𝑈𝑇 ) ∈ 𝐵 )
9 8 3adant3 ( ( 𝐾 ∈ CLat ∧ 𝑇𝐵𝑆𝑇 ) → ( 𝑈𝑇 ) ∈ 𝐵 )
10 4 7 9 3jca ( ( 𝐾 ∈ CLat ∧ 𝑇𝐵𝑆𝑇 ) → ( 𝐾 ∈ CLat ∧ 𝑆𝐵 ∧ ( 𝑈𝑇 ) ∈ 𝐵 ) )
11 simpl1 ( ( ( 𝐾 ∈ CLat ∧ 𝑇𝐵𝑆𝑇 ) ∧ 𝑦𝑆 ) → 𝐾 ∈ CLat )
12 simpl2 ( ( ( 𝐾 ∈ CLat ∧ 𝑇𝐵𝑆𝑇 ) ∧ 𝑦𝑆 ) → 𝑇𝐵 )
13 ssel2 ( ( 𝑆𝑇𝑦𝑆 ) → 𝑦𝑇 )
14 13 3ad2antl3 ( ( ( 𝐾 ∈ CLat ∧ 𝑇𝐵𝑆𝑇 ) ∧ 𝑦𝑆 ) → 𝑦𝑇 )
15 1 2 3 lubub ( ( 𝐾 ∈ CLat ∧ 𝑇𝐵𝑦𝑇 ) → 𝑦 ( 𝑈𝑇 ) )
16 11 12 14 15 syl3anc ( ( ( 𝐾 ∈ CLat ∧ 𝑇𝐵𝑆𝑇 ) ∧ 𝑦𝑆 ) → 𝑦 ( 𝑈𝑇 ) )
17 16 ralrimiva ( ( 𝐾 ∈ CLat ∧ 𝑇𝐵𝑆𝑇 ) → ∀ 𝑦𝑆 𝑦 ( 𝑈𝑇 ) )
18 1 2 3 lubl ( ( 𝐾 ∈ CLat ∧ 𝑆𝐵 ∧ ( 𝑈𝑇 ) ∈ 𝐵 ) → ( ∀ 𝑦𝑆 𝑦 ( 𝑈𝑇 ) → ( 𝑈𝑆 ) ( 𝑈𝑇 ) ) )
19 10 17 18 sylc ( ( 𝐾 ∈ CLat ∧ 𝑇𝐵𝑆𝑇 ) → ( 𝑈𝑆 ) ( 𝑈𝑇 ) )