Step |
Hyp |
Ref |
Expression |
1 |
|
lubsscl.k |
⊢ ( 𝜑 → 𝐾 ∈ Poset ) |
2 |
|
lubsscl.t |
⊢ ( 𝜑 → 𝑇 ⊆ 𝑆 ) |
3 |
|
lubsscl.u |
⊢ 𝑈 = ( lub ‘ 𝐾 ) |
4 |
|
lubsscl.s |
⊢ ( 𝜑 → 𝑆 ∈ dom 𝑈 ) |
5 |
|
lubsscl.x |
⊢ ( 𝜑 → ( 𝑈 ‘ 𝑆 ) ∈ 𝑇 ) |
6 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
7 |
|
eqid |
⊢ ( le ‘ 𝐾 ) = ( le ‘ 𝐾 ) |
8 |
6 7 3 1 4
|
lubelss |
⊢ ( 𝜑 → 𝑆 ⊆ ( Base ‘ 𝐾 ) ) |
9 |
2 8
|
sstrd |
⊢ ( 𝜑 → 𝑇 ⊆ ( Base ‘ 𝐾 ) ) |
10 |
9 5
|
sseldd |
⊢ ( 𝜑 → ( 𝑈 ‘ 𝑆 ) ∈ ( Base ‘ 𝐾 ) ) |
11 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑇 ) → 𝐾 ∈ Poset ) |
12 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑇 ) → 𝑆 ∈ dom 𝑈 ) |
13 |
2
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑇 ) → 𝑦 ∈ 𝑆 ) |
14 |
6 7 3 11 12 13
|
luble |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑇 ) → 𝑦 ( le ‘ 𝐾 ) ( 𝑈 ‘ 𝑆 ) ) |
15 |
14
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑦 ∈ 𝑇 𝑦 ( le ‘ 𝐾 ) ( 𝑈 ‘ 𝑆 ) ) |
16 |
|
breq1 |
⊢ ( 𝑦 = ( 𝑈 ‘ 𝑆 ) → ( 𝑦 ( le ‘ 𝐾 ) 𝑧 ↔ ( 𝑈 ‘ 𝑆 ) ( le ‘ 𝐾 ) 𝑧 ) ) |
17 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( Base ‘ 𝐾 ) ∧ ∀ 𝑦 ∈ 𝑇 𝑦 ( le ‘ 𝐾 ) 𝑧 ) → ∀ 𝑦 ∈ 𝑇 𝑦 ( le ‘ 𝐾 ) 𝑧 ) |
18 |
5
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( Base ‘ 𝐾 ) ∧ ∀ 𝑦 ∈ 𝑇 𝑦 ( le ‘ 𝐾 ) 𝑧 ) → ( 𝑈 ‘ 𝑆 ) ∈ 𝑇 ) |
19 |
16 17 18
|
rspcdva |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( Base ‘ 𝐾 ) ∧ ∀ 𝑦 ∈ 𝑇 𝑦 ( le ‘ 𝐾 ) 𝑧 ) → ( 𝑈 ‘ 𝑆 ) ( le ‘ 𝐾 ) 𝑧 ) |
20 |
19
|
3expia |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( Base ‘ 𝐾 ) ) → ( ∀ 𝑦 ∈ 𝑇 𝑦 ( le ‘ 𝐾 ) 𝑧 → ( 𝑈 ‘ 𝑆 ) ( le ‘ 𝐾 ) 𝑧 ) ) |
21 |
20
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑧 ∈ ( Base ‘ 𝐾 ) ( ∀ 𝑦 ∈ 𝑇 𝑦 ( le ‘ 𝐾 ) 𝑧 → ( 𝑈 ‘ 𝑆 ) ( le ‘ 𝐾 ) 𝑧 ) ) |
22 |
|
breq2 |
⊢ ( 𝑥 = ( 𝑈 ‘ 𝑆 ) → ( 𝑦 ( le ‘ 𝐾 ) 𝑥 ↔ 𝑦 ( le ‘ 𝐾 ) ( 𝑈 ‘ 𝑆 ) ) ) |
23 |
22
|
ralbidv |
⊢ ( 𝑥 = ( 𝑈 ‘ 𝑆 ) → ( ∀ 𝑦 ∈ 𝑇 𝑦 ( le ‘ 𝐾 ) 𝑥 ↔ ∀ 𝑦 ∈ 𝑇 𝑦 ( le ‘ 𝐾 ) ( 𝑈 ‘ 𝑆 ) ) ) |
24 |
|
breq1 |
⊢ ( 𝑥 = ( 𝑈 ‘ 𝑆 ) → ( 𝑥 ( le ‘ 𝐾 ) 𝑧 ↔ ( 𝑈 ‘ 𝑆 ) ( le ‘ 𝐾 ) 𝑧 ) ) |
25 |
24
|
imbi2d |
⊢ ( 𝑥 = ( 𝑈 ‘ 𝑆 ) → ( ( ∀ 𝑦 ∈ 𝑇 𝑦 ( le ‘ 𝐾 ) 𝑧 → 𝑥 ( le ‘ 𝐾 ) 𝑧 ) ↔ ( ∀ 𝑦 ∈ 𝑇 𝑦 ( le ‘ 𝐾 ) 𝑧 → ( 𝑈 ‘ 𝑆 ) ( le ‘ 𝐾 ) 𝑧 ) ) ) |
26 |
25
|
ralbidv |
⊢ ( 𝑥 = ( 𝑈 ‘ 𝑆 ) → ( ∀ 𝑧 ∈ ( Base ‘ 𝐾 ) ( ∀ 𝑦 ∈ 𝑇 𝑦 ( le ‘ 𝐾 ) 𝑧 → 𝑥 ( le ‘ 𝐾 ) 𝑧 ) ↔ ∀ 𝑧 ∈ ( Base ‘ 𝐾 ) ( ∀ 𝑦 ∈ 𝑇 𝑦 ( le ‘ 𝐾 ) 𝑧 → ( 𝑈 ‘ 𝑆 ) ( le ‘ 𝐾 ) 𝑧 ) ) ) |
27 |
23 26
|
anbi12d |
⊢ ( 𝑥 = ( 𝑈 ‘ 𝑆 ) → ( ( ∀ 𝑦 ∈ 𝑇 𝑦 ( le ‘ 𝐾 ) 𝑥 ∧ ∀ 𝑧 ∈ ( Base ‘ 𝐾 ) ( ∀ 𝑦 ∈ 𝑇 𝑦 ( le ‘ 𝐾 ) 𝑧 → 𝑥 ( le ‘ 𝐾 ) 𝑧 ) ) ↔ ( ∀ 𝑦 ∈ 𝑇 𝑦 ( le ‘ 𝐾 ) ( 𝑈 ‘ 𝑆 ) ∧ ∀ 𝑧 ∈ ( Base ‘ 𝐾 ) ( ∀ 𝑦 ∈ 𝑇 𝑦 ( le ‘ 𝐾 ) 𝑧 → ( 𝑈 ‘ 𝑆 ) ( le ‘ 𝐾 ) 𝑧 ) ) ) ) |
28 |
27
|
rspcev |
⊢ ( ( ( 𝑈 ‘ 𝑆 ) ∈ ( Base ‘ 𝐾 ) ∧ ( ∀ 𝑦 ∈ 𝑇 𝑦 ( le ‘ 𝐾 ) ( 𝑈 ‘ 𝑆 ) ∧ ∀ 𝑧 ∈ ( Base ‘ 𝐾 ) ( ∀ 𝑦 ∈ 𝑇 𝑦 ( le ‘ 𝐾 ) 𝑧 → ( 𝑈 ‘ 𝑆 ) ( le ‘ 𝐾 ) 𝑧 ) ) ) → ∃ 𝑥 ∈ ( Base ‘ 𝐾 ) ( ∀ 𝑦 ∈ 𝑇 𝑦 ( le ‘ 𝐾 ) 𝑥 ∧ ∀ 𝑧 ∈ ( Base ‘ 𝐾 ) ( ∀ 𝑦 ∈ 𝑇 𝑦 ( le ‘ 𝐾 ) 𝑧 → 𝑥 ( le ‘ 𝐾 ) 𝑧 ) ) ) |
29 |
10 15 21 28
|
syl12anc |
⊢ ( 𝜑 → ∃ 𝑥 ∈ ( Base ‘ 𝐾 ) ( ∀ 𝑦 ∈ 𝑇 𝑦 ( le ‘ 𝐾 ) 𝑥 ∧ ∀ 𝑧 ∈ ( Base ‘ 𝐾 ) ( ∀ 𝑦 ∈ 𝑇 𝑦 ( le ‘ 𝐾 ) 𝑧 → 𝑥 ( le ‘ 𝐾 ) 𝑧 ) ) ) |
30 |
|
biid |
⊢ ( ( ∀ 𝑦 ∈ 𝑇 𝑦 ( le ‘ 𝐾 ) 𝑥 ∧ ∀ 𝑧 ∈ ( Base ‘ 𝐾 ) ( ∀ 𝑦 ∈ 𝑇 𝑦 ( le ‘ 𝐾 ) 𝑧 → 𝑥 ( le ‘ 𝐾 ) 𝑧 ) ) ↔ ( ∀ 𝑦 ∈ 𝑇 𝑦 ( le ‘ 𝐾 ) 𝑥 ∧ ∀ 𝑧 ∈ ( Base ‘ 𝐾 ) ( ∀ 𝑦 ∈ 𝑇 𝑦 ( le ‘ 𝐾 ) 𝑧 → 𝑥 ( le ‘ 𝐾 ) 𝑧 ) ) ) |
31 |
6 7 3 30 1
|
lubeldm2 |
⊢ ( 𝜑 → ( 𝑇 ∈ dom 𝑈 ↔ ( 𝑇 ⊆ ( Base ‘ 𝐾 ) ∧ ∃ 𝑥 ∈ ( Base ‘ 𝐾 ) ( ∀ 𝑦 ∈ 𝑇 𝑦 ( le ‘ 𝐾 ) 𝑥 ∧ ∀ 𝑧 ∈ ( Base ‘ 𝐾 ) ( ∀ 𝑦 ∈ 𝑇 𝑦 ( le ‘ 𝐾 ) 𝑧 → 𝑥 ( le ‘ 𝐾 ) 𝑧 ) ) ) ) ) |
32 |
9 29 31
|
mpbir2and |
⊢ ( 𝜑 → 𝑇 ∈ dom 𝑈 ) |
33 |
7 6 3 1 9 10 14 19
|
poslubd |
⊢ ( 𝜑 → ( 𝑈 ‘ 𝑇 ) = ( 𝑈 ‘ 𝑆 ) ) |
34 |
32 33
|
jca |
⊢ ( 𝜑 → ( 𝑇 ∈ dom 𝑈 ∧ ( 𝑈 ‘ 𝑇 ) = ( 𝑈 ‘ 𝑆 ) ) ) |