Metamath Proof Explorer


Theorem lubub

Description: The LUB of a complete lattice subset is an upper bound. (Contributed by NM, 19-Oct-2011)

Ref Expression
Hypotheses lublem.b 𝐵 = ( Base ‘ 𝐾 )
lublem.l = ( le ‘ 𝐾 )
lublem.u 𝑈 = ( lub ‘ 𝐾 )
Assertion lubub ( ( 𝐾 ∈ CLat ∧ 𝑆𝐵𝑋𝑆 ) → 𝑋 ( 𝑈𝑆 ) )

Proof

Step Hyp Ref Expression
1 lublem.b 𝐵 = ( Base ‘ 𝐾 )
2 lublem.l = ( le ‘ 𝐾 )
3 lublem.u 𝑈 = ( lub ‘ 𝐾 )
4 1 2 3 lublem ( ( 𝐾 ∈ CLat ∧ 𝑆𝐵 ) → ( ∀ 𝑦𝑆 𝑦 ( 𝑈𝑆 ) ∧ ∀ 𝑧𝐵 ( ∀ 𝑦𝑆 𝑦 𝑧 → ( 𝑈𝑆 ) 𝑧 ) ) )
5 4 simpld ( ( 𝐾 ∈ CLat ∧ 𝑆𝐵 ) → ∀ 𝑦𝑆 𝑦 ( 𝑈𝑆 ) )
6 breq1 ( 𝑦 = 𝑋 → ( 𝑦 ( 𝑈𝑆 ) ↔ 𝑋 ( 𝑈𝑆 ) ) )
7 6 rspccva ( ( ∀ 𝑦𝑆 𝑦 ( 𝑈𝑆 ) ∧ 𝑋𝑆 ) → 𝑋 ( 𝑈𝑆 ) )
8 5 7 stoic3 ( ( 𝐾 ∈ CLat ∧ 𝑆𝐵𝑋𝑆 ) → 𝑋 ( 𝑈𝑆 ) )