Description: The LUB of a complete lattice subset is an upper bound. (Contributed by NM, 19-Oct-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lublem.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| lublem.l | ⊢ ≤ = ( le ‘ 𝐾 ) | ||
| lublem.u | ⊢ 𝑈 = ( lub ‘ 𝐾 ) | ||
| Assertion | lubub | ⊢ ( ( 𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵 ∧ 𝑋 ∈ 𝑆 ) → 𝑋 ≤ ( 𝑈 ‘ 𝑆 ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | lublem.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| 2 | lublem.l | ⊢ ≤ = ( le ‘ 𝐾 ) | |
| 3 | lublem.u | ⊢ 𝑈 = ( lub ‘ 𝐾 ) | |
| 4 | 1 2 3 | lublem | ⊢ ( ( 𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵 ) → ( ∀ 𝑦 ∈ 𝑆 𝑦 ≤ ( 𝑈 ‘ 𝑆 ) ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 𝑦 ≤ 𝑧 → ( 𝑈 ‘ 𝑆 ) ≤ 𝑧 ) ) ) | 
| 5 | 4 | simpld | ⊢ ( ( 𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵 ) → ∀ 𝑦 ∈ 𝑆 𝑦 ≤ ( 𝑈 ‘ 𝑆 ) ) | 
| 6 | breq1 | ⊢ ( 𝑦 = 𝑋 → ( 𝑦 ≤ ( 𝑈 ‘ 𝑆 ) ↔ 𝑋 ≤ ( 𝑈 ‘ 𝑆 ) ) ) | |
| 7 | 6 | rspccva | ⊢ ( ( ∀ 𝑦 ∈ 𝑆 𝑦 ≤ ( 𝑈 ‘ 𝑆 ) ∧ 𝑋 ∈ 𝑆 ) → 𝑋 ≤ ( 𝑈 ‘ 𝑆 ) ) | 
| 8 | 5 7 | stoic3 | ⊢ ( ( 𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵 ∧ 𝑋 ∈ 𝑆 ) → 𝑋 ≤ ( 𝑈 ‘ 𝑆 ) ) |