Step |
Hyp |
Ref |
Expression |
1 |
|
lubval.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
lubval.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
3 |
|
lubval.u |
⊢ 𝑈 = ( lub ‘ 𝐾 ) |
4 |
|
lubval.p |
⊢ ( 𝜓 ↔ ( ∀ 𝑦 ∈ 𝑆 𝑦 ≤ 𝑥 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧 ) ) ) |
5 |
|
lubval.k |
⊢ ( 𝜑 → 𝐾 ∈ 𝑉 ) |
6 |
|
lubval.s |
⊢ ( 𝜑 → 𝑆 ⊆ 𝐵 ) |
7 |
|
biid |
⊢ ( ( ∀ 𝑦 ∈ 𝑠 𝑦 ≤ 𝑥 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑠 𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧 ) ) ↔ ( ∀ 𝑦 ∈ 𝑠 𝑦 ≤ 𝑥 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑠 𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧 ) ) ) |
8 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑆 ∈ dom 𝑈 ) → 𝐾 ∈ 𝑉 ) |
9 |
1 2 3 7 8
|
lubfval |
⊢ ( ( 𝜑 ∧ 𝑆 ∈ dom 𝑈 ) → 𝑈 = ( ( 𝑠 ∈ 𝒫 𝐵 ↦ ( ℩ 𝑥 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑠 𝑦 ≤ 𝑥 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑠 𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧 ) ) ) ) ↾ { 𝑠 ∣ ∃! 𝑥 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑠 𝑦 ≤ 𝑥 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑠 𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧 ) ) } ) ) |
10 |
9
|
fveq1d |
⊢ ( ( 𝜑 ∧ 𝑆 ∈ dom 𝑈 ) → ( 𝑈 ‘ 𝑆 ) = ( ( ( 𝑠 ∈ 𝒫 𝐵 ↦ ( ℩ 𝑥 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑠 𝑦 ≤ 𝑥 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑠 𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧 ) ) ) ) ↾ { 𝑠 ∣ ∃! 𝑥 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑠 𝑦 ≤ 𝑥 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑠 𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧 ) ) } ) ‘ 𝑆 ) ) |
11 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑆 ∈ dom 𝑈 ) → 𝑆 ∈ dom 𝑈 ) |
12 |
1 2 3 4 8 11
|
lubeu |
⊢ ( ( 𝜑 ∧ 𝑆 ∈ dom 𝑈 ) → ∃! 𝑥 ∈ 𝐵 𝜓 ) |
13 |
|
raleq |
⊢ ( 𝑠 = 𝑆 → ( ∀ 𝑦 ∈ 𝑠 𝑦 ≤ 𝑥 ↔ ∀ 𝑦 ∈ 𝑆 𝑦 ≤ 𝑥 ) ) |
14 |
|
raleq |
⊢ ( 𝑠 = 𝑆 → ( ∀ 𝑦 ∈ 𝑠 𝑦 ≤ 𝑧 ↔ ∀ 𝑦 ∈ 𝑆 𝑦 ≤ 𝑧 ) ) |
15 |
14
|
imbi1d |
⊢ ( 𝑠 = 𝑆 → ( ( ∀ 𝑦 ∈ 𝑠 𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧 ) ↔ ( ∀ 𝑦 ∈ 𝑆 𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧 ) ) ) |
16 |
15
|
ralbidv |
⊢ ( 𝑠 = 𝑆 → ( ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑠 𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧 ) ↔ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧 ) ) ) |
17 |
13 16
|
anbi12d |
⊢ ( 𝑠 = 𝑆 → ( ( ∀ 𝑦 ∈ 𝑠 𝑦 ≤ 𝑥 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑠 𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧 ) ) ↔ ( ∀ 𝑦 ∈ 𝑆 𝑦 ≤ 𝑥 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧 ) ) ) ) |
18 |
17 4
|
bitr4di |
⊢ ( 𝑠 = 𝑆 → ( ( ∀ 𝑦 ∈ 𝑠 𝑦 ≤ 𝑥 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑠 𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧 ) ) ↔ 𝜓 ) ) |
19 |
18
|
reubidv |
⊢ ( 𝑠 = 𝑆 → ( ∃! 𝑥 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑠 𝑦 ≤ 𝑥 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑠 𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧 ) ) ↔ ∃! 𝑥 ∈ 𝐵 𝜓 ) ) |
20 |
11 12 19
|
elabd |
⊢ ( ( 𝜑 ∧ 𝑆 ∈ dom 𝑈 ) → 𝑆 ∈ { 𝑠 ∣ ∃! 𝑥 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑠 𝑦 ≤ 𝑥 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑠 𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧 ) ) } ) |
21 |
20
|
fvresd |
⊢ ( ( 𝜑 ∧ 𝑆 ∈ dom 𝑈 ) → ( ( ( 𝑠 ∈ 𝒫 𝐵 ↦ ( ℩ 𝑥 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑠 𝑦 ≤ 𝑥 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑠 𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧 ) ) ) ) ↾ { 𝑠 ∣ ∃! 𝑥 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑠 𝑦 ≤ 𝑥 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑠 𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧 ) ) } ) ‘ 𝑆 ) = ( ( 𝑠 ∈ 𝒫 𝐵 ↦ ( ℩ 𝑥 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑠 𝑦 ≤ 𝑥 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑠 𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧 ) ) ) ) ‘ 𝑆 ) ) |
22 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑆 ∈ dom 𝑈 ) → 𝑆 ⊆ 𝐵 ) |
23 |
1
|
fvexi |
⊢ 𝐵 ∈ V |
24 |
23
|
elpw2 |
⊢ ( 𝑆 ∈ 𝒫 𝐵 ↔ 𝑆 ⊆ 𝐵 ) |
25 |
22 24
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑆 ∈ dom 𝑈 ) → 𝑆 ∈ 𝒫 𝐵 ) |
26 |
18
|
riotabidv |
⊢ ( 𝑠 = 𝑆 → ( ℩ 𝑥 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑠 𝑦 ≤ 𝑥 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑠 𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧 ) ) ) = ( ℩ 𝑥 ∈ 𝐵 𝜓 ) ) |
27 |
|
eqid |
⊢ ( 𝑠 ∈ 𝒫 𝐵 ↦ ( ℩ 𝑥 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑠 𝑦 ≤ 𝑥 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑠 𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧 ) ) ) ) = ( 𝑠 ∈ 𝒫 𝐵 ↦ ( ℩ 𝑥 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑠 𝑦 ≤ 𝑥 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑠 𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧 ) ) ) ) |
28 |
|
riotaex |
⊢ ( ℩ 𝑥 ∈ 𝐵 𝜓 ) ∈ V |
29 |
26 27 28
|
fvmpt |
⊢ ( 𝑆 ∈ 𝒫 𝐵 → ( ( 𝑠 ∈ 𝒫 𝐵 ↦ ( ℩ 𝑥 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑠 𝑦 ≤ 𝑥 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑠 𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧 ) ) ) ) ‘ 𝑆 ) = ( ℩ 𝑥 ∈ 𝐵 𝜓 ) ) |
30 |
25 29
|
syl |
⊢ ( ( 𝜑 ∧ 𝑆 ∈ dom 𝑈 ) → ( ( 𝑠 ∈ 𝒫 𝐵 ↦ ( ℩ 𝑥 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑠 𝑦 ≤ 𝑥 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑠 𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧 ) ) ) ) ‘ 𝑆 ) = ( ℩ 𝑥 ∈ 𝐵 𝜓 ) ) |
31 |
10 21 30
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑆 ∈ dom 𝑈 ) → ( 𝑈 ‘ 𝑆 ) = ( ℩ 𝑥 ∈ 𝐵 𝜓 ) ) |
32 |
|
ndmfv |
⊢ ( ¬ 𝑆 ∈ dom 𝑈 → ( 𝑈 ‘ 𝑆 ) = ∅ ) |
33 |
32
|
adantl |
⊢ ( ( 𝜑 ∧ ¬ 𝑆 ∈ dom 𝑈 ) → ( 𝑈 ‘ 𝑆 ) = ∅ ) |
34 |
1 2 3 4 5
|
lubeldm |
⊢ ( 𝜑 → ( 𝑆 ∈ dom 𝑈 ↔ ( 𝑆 ⊆ 𝐵 ∧ ∃! 𝑥 ∈ 𝐵 𝜓 ) ) ) |
35 |
34
|
biimprd |
⊢ ( 𝜑 → ( ( 𝑆 ⊆ 𝐵 ∧ ∃! 𝑥 ∈ 𝐵 𝜓 ) → 𝑆 ∈ dom 𝑈 ) ) |
36 |
6 35
|
mpand |
⊢ ( 𝜑 → ( ∃! 𝑥 ∈ 𝐵 𝜓 → 𝑆 ∈ dom 𝑈 ) ) |
37 |
36
|
con3dimp |
⊢ ( ( 𝜑 ∧ ¬ 𝑆 ∈ dom 𝑈 ) → ¬ ∃! 𝑥 ∈ 𝐵 𝜓 ) |
38 |
|
riotaund |
⊢ ( ¬ ∃! 𝑥 ∈ 𝐵 𝜓 → ( ℩ 𝑥 ∈ 𝐵 𝜓 ) = ∅ ) |
39 |
37 38
|
syl |
⊢ ( ( 𝜑 ∧ ¬ 𝑆 ∈ dom 𝑈 ) → ( ℩ 𝑥 ∈ 𝐵 𝜓 ) = ∅ ) |
40 |
33 39
|
eqtr4d |
⊢ ( ( 𝜑 ∧ ¬ 𝑆 ∈ dom 𝑈 ) → ( 𝑈 ‘ 𝑆 ) = ( ℩ 𝑥 ∈ 𝐵 𝜓 ) ) |
41 |
31 40
|
pm2.61dan |
⊢ ( 𝜑 → ( 𝑈 ‘ 𝑆 ) = ( ℩ 𝑥 ∈ 𝐵 𝜓 ) ) |