| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lubval.b | ⊢ 𝐵  =  ( Base ‘ 𝐾 ) | 
						
							| 2 |  | lubval.l | ⊢  ≤   =  ( le ‘ 𝐾 ) | 
						
							| 3 |  | lubval.u | ⊢ 𝑈  =  ( lub ‘ 𝐾 ) | 
						
							| 4 |  | lubval.p | ⊢ ( 𝜓  ↔  ( ∀ 𝑦  ∈  𝑆 𝑦  ≤  𝑥  ∧  ∀ 𝑧  ∈  𝐵 ( ∀ 𝑦  ∈  𝑆 𝑦  ≤  𝑧  →  𝑥  ≤  𝑧 ) ) ) | 
						
							| 5 |  | lubval.k | ⊢ ( 𝜑  →  𝐾  ∈  𝑉 ) | 
						
							| 6 |  | lubval.s | ⊢ ( 𝜑  →  𝑆  ⊆  𝐵 ) | 
						
							| 7 |  | biid | ⊢ ( ( ∀ 𝑦  ∈  𝑠 𝑦  ≤  𝑥  ∧  ∀ 𝑧  ∈  𝐵 ( ∀ 𝑦  ∈  𝑠 𝑦  ≤  𝑧  →  𝑥  ≤  𝑧 ) )  ↔  ( ∀ 𝑦  ∈  𝑠 𝑦  ≤  𝑥  ∧  ∀ 𝑧  ∈  𝐵 ( ∀ 𝑦  ∈  𝑠 𝑦  ≤  𝑧  →  𝑥  ≤  𝑧 ) ) ) | 
						
							| 8 | 5 | adantr | ⊢ ( ( 𝜑  ∧  𝑆  ∈  dom  𝑈 )  →  𝐾  ∈  𝑉 ) | 
						
							| 9 | 1 2 3 7 8 | lubfval | ⊢ ( ( 𝜑  ∧  𝑆  ∈  dom  𝑈 )  →  𝑈  =  ( ( 𝑠  ∈  𝒫  𝐵  ↦  ( ℩ 𝑥  ∈  𝐵 ( ∀ 𝑦  ∈  𝑠 𝑦  ≤  𝑥  ∧  ∀ 𝑧  ∈  𝐵 ( ∀ 𝑦  ∈  𝑠 𝑦  ≤  𝑧  →  𝑥  ≤  𝑧 ) ) ) )  ↾  { 𝑠  ∣  ∃! 𝑥  ∈  𝐵 ( ∀ 𝑦  ∈  𝑠 𝑦  ≤  𝑥  ∧  ∀ 𝑧  ∈  𝐵 ( ∀ 𝑦  ∈  𝑠 𝑦  ≤  𝑧  →  𝑥  ≤  𝑧 ) ) } ) ) | 
						
							| 10 | 9 | fveq1d | ⊢ ( ( 𝜑  ∧  𝑆  ∈  dom  𝑈 )  →  ( 𝑈 ‘ 𝑆 )  =  ( ( ( 𝑠  ∈  𝒫  𝐵  ↦  ( ℩ 𝑥  ∈  𝐵 ( ∀ 𝑦  ∈  𝑠 𝑦  ≤  𝑥  ∧  ∀ 𝑧  ∈  𝐵 ( ∀ 𝑦  ∈  𝑠 𝑦  ≤  𝑧  →  𝑥  ≤  𝑧 ) ) ) )  ↾  { 𝑠  ∣  ∃! 𝑥  ∈  𝐵 ( ∀ 𝑦  ∈  𝑠 𝑦  ≤  𝑥  ∧  ∀ 𝑧  ∈  𝐵 ( ∀ 𝑦  ∈  𝑠 𝑦  ≤  𝑧  →  𝑥  ≤  𝑧 ) ) } ) ‘ 𝑆 ) ) | 
						
							| 11 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑆  ∈  dom  𝑈 )  →  𝑆  ∈  dom  𝑈 ) | 
						
							| 12 | 1 2 3 4 8 11 | lubeu | ⊢ ( ( 𝜑  ∧  𝑆  ∈  dom  𝑈 )  →  ∃! 𝑥  ∈  𝐵 𝜓 ) | 
						
							| 13 |  | raleq | ⊢ ( 𝑠  =  𝑆  →  ( ∀ 𝑦  ∈  𝑠 𝑦  ≤  𝑥  ↔  ∀ 𝑦  ∈  𝑆 𝑦  ≤  𝑥 ) ) | 
						
							| 14 |  | raleq | ⊢ ( 𝑠  =  𝑆  →  ( ∀ 𝑦  ∈  𝑠 𝑦  ≤  𝑧  ↔  ∀ 𝑦  ∈  𝑆 𝑦  ≤  𝑧 ) ) | 
						
							| 15 | 14 | imbi1d | ⊢ ( 𝑠  =  𝑆  →  ( ( ∀ 𝑦  ∈  𝑠 𝑦  ≤  𝑧  →  𝑥  ≤  𝑧 )  ↔  ( ∀ 𝑦  ∈  𝑆 𝑦  ≤  𝑧  →  𝑥  ≤  𝑧 ) ) ) | 
						
							| 16 | 15 | ralbidv | ⊢ ( 𝑠  =  𝑆  →  ( ∀ 𝑧  ∈  𝐵 ( ∀ 𝑦  ∈  𝑠 𝑦  ≤  𝑧  →  𝑥  ≤  𝑧 )  ↔  ∀ 𝑧  ∈  𝐵 ( ∀ 𝑦  ∈  𝑆 𝑦  ≤  𝑧  →  𝑥  ≤  𝑧 ) ) ) | 
						
							| 17 | 13 16 | anbi12d | ⊢ ( 𝑠  =  𝑆  →  ( ( ∀ 𝑦  ∈  𝑠 𝑦  ≤  𝑥  ∧  ∀ 𝑧  ∈  𝐵 ( ∀ 𝑦  ∈  𝑠 𝑦  ≤  𝑧  →  𝑥  ≤  𝑧 ) )  ↔  ( ∀ 𝑦  ∈  𝑆 𝑦  ≤  𝑥  ∧  ∀ 𝑧  ∈  𝐵 ( ∀ 𝑦  ∈  𝑆 𝑦  ≤  𝑧  →  𝑥  ≤  𝑧 ) ) ) ) | 
						
							| 18 | 17 4 | bitr4di | ⊢ ( 𝑠  =  𝑆  →  ( ( ∀ 𝑦  ∈  𝑠 𝑦  ≤  𝑥  ∧  ∀ 𝑧  ∈  𝐵 ( ∀ 𝑦  ∈  𝑠 𝑦  ≤  𝑧  →  𝑥  ≤  𝑧 ) )  ↔  𝜓 ) ) | 
						
							| 19 | 18 | reubidv | ⊢ ( 𝑠  =  𝑆  →  ( ∃! 𝑥  ∈  𝐵 ( ∀ 𝑦  ∈  𝑠 𝑦  ≤  𝑥  ∧  ∀ 𝑧  ∈  𝐵 ( ∀ 𝑦  ∈  𝑠 𝑦  ≤  𝑧  →  𝑥  ≤  𝑧 ) )  ↔  ∃! 𝑥  ∈  𝐵 𝜓 ) ) | 
						
							| 20 | 11 12 19 | elabd | ⊢ ( ( 𝜑  ∧  𝑆  ∈  dom  𝑈 )  →  𝑆  ∈  { 𝑠  ∣  ∃! 𝑥  ∈  𝐵 ( ∀ 𝑦  ∈  𝑠 𝑦  ≤  𝑥  ∧  ∀ 𝑧  ∈  𝐵 ( ∀ 𝑦  ∈  𝑠 𝑦  ≤  𝑧  →  𝑥  ≤  𝑧 ) ) } ) | 
						
							| 21 | 20 | fvresd | ⊢ ( ( 𝜑  ∧  𝑆  ∈  dom  𝑈 )  →  ( ( ( 𝑠  ∈  𝒫  𝐵  ↦  ( ℩ 𝑥  ∈  𝐵 ( ∀ 𝑦  ∈  𝑠 𝑦  ≤  𝑥  ∧  ∀ 𝑧  ∈  𝐵 ( ∀ 𝑦  ∈  𝑠 𝑦  ≤  𝑧  →  𝑥  ≤  𝑧 ) ) ) )  ↾  { 𝑠  ∣  ∃! 𝑥  ∈  𝐵 ( ∀ 𝑦  ∈  𝑠 𝑦  ≤  𝑥  ∧  ∀ 𝑧  ∈  𝐵 ( ∀ 𝑦  ∈  𝑠 𝑦  ≤  𝑧  →  𝑥  ≤  𝑧 ) ) } ) ‘ 𝑆 )  =  ( ( 𝑠  ∈  𝒫  𝐵  ↦  ( ℩ 𝑥  ∈  𝐵 ( ∀ 𝑦  ∈  𝑠 𝑦  ≤  𝑥  ∧  ∀ 𝑧  ∈  𝐵 ( ∀ 𝑦  ∈  𝑠 𝑦  ≤  𝑧  →  𝑥  ≤  𝑧 ) ) ) ) ‘ 𝑆 ) ) | 
						
							| 22 | 6 | adantr | ⊢ ( ( 𝜑  ∧  𝑆  ∈  dom  𝑈 )  →  𝑆  ⊆  𝐵 ) | 
						
							| 23 | 1 | fvexi | ⊢ 𝐵  ∈  V | 
						
							| 24 | 23 | elpw2 | ⊢ ( 𝑆  ∈  𝒫  𝐵  ↔  𝑆  ⊆  𝐵 ) | 
						
							| 25 | 22 24 | sylibr | ⊢ ( ( 𝜑  ∧  𝑆  ∈  dom  𝑈 )  →  𝑆  ∈  𝒫  𝐵 ) | 
						
							| 26 | 18 | riotabidv | ⊢ ( 𝑠  =  𝑆  →  ( ℩ 𝑥  ∈  𝐵 ( ∀ 𝑦  ∈  𝑠 𝑦  ≤  𝑥  ∧  ∀ 𝑧  ∈  𝐵 ( ∀ 𝑦  ∈  𝑠 𝑦  ≤  𝑧  →  𝑥  ≤  𝑧 ) ) )  =  ( ℩ 𝑥  ∈  𝐵 𝜓 ) ) | 
						
							| 27 |  | eqid | ⊢ ( 𝑠  ∈  𝒫  𝐵  ↦  ( ℩ 𝑥  ∈  𝐵 ( ∀ 𝑦  ∈  𝑠 𝑦  ≤  𝑥  ∧  ∀ 𝑧  ∈  𝐵 ( ∀ 𝑦  ∈  𝑠 𝑦  ≤  𝑧  →  𝑥  ≤  𝑧 ) ) ) )  =  ( 𝑠  ∈  𝒫  𝐵  ↦  ( ℩ 𝑥  ∈  𝐵 ( ∀ 𝑦  ∈  𝑠 𝑦  ≤  𝑥  ∧  ∀ 𝑧  ∈  𝐵 ( ∀ 𝑦  ∈  𝑠 𝑦  ≤  𝑧  →  𝑥  ≤  𝑧 ) ) ) ) | 
						
							| 28 |  | riotaex | ⊢ ( ℩ 𝑥  ∈  𝐵 𝜓 )  ∈  V | 
						
							| 29 | 26 27 28 | fvmpt | ⊢ ( 𝑆  ∈  𝒫  𝐵  →  ( ( 𝑠  ∈  𝒫  𝐵  ↦  ( ℩ 𝑥  ∈  𝐵 ( ∀ 𝑦  ∈  𝑠 𝑦  ≤  𝑥  ∧  ∀ 𝑧  ∈  𝐵 ( ∀ 𝑦  ∈  𝑠 𝑦  ≤  𝑧  →  𝑥  ≤  𝑧 ) ) ) ) ‘ 𝑆 )  =  ( ℩ 𝑥  ∈  𝐵 𝜓 ) ) | 
						
							| 30 | 25 29 | syl | ⊢ ( ( 𝜑  ∧  𝑆  ∈  dom  𝑈 )  →  ( ( 𝑠  ∈  𝒫  𝐵  ↦  ( ℩ 𝑥  ∈  𝐵 ( ∀ 𝑦  ∈  𝑠 𝑦  ≤  𝑥  ∧  ∀ 𝑧  ∈  𝐵 ( ∀ 𝑦  ∈  𝑠 𝑦  ≤  𝑧  →  𝑥  ≤  𝑧 ) ) ) ) ‘ 𝑆 )  =  ( ℩ 𝑥  ∈  𝐵 𝜓 ) ) | 
						
							| 31 | 10 21 30 | 3eqtrd | ⊢ ( ( 𝜑  ∧  𝑆  ∈  dom  𝑈 )  →  ( 𝑈 ‘ 𝑆 )  =  ( ℩ 𝑥  ∈  𝐵 𝜓 ) ) | 
						
							| 32 |  | ndmfv | ⊢ ( ¬  𝑆  ∈  dom  𝑈  →  ( 𝑈 ‘ 𝑆 )  =  ∅ ) | 
						
							| 33 | 32 | adantl | ⊢ ( ( 𝜑  ∧  ¬  𝑆  ∈  dom  𝑈 )  →  ( 𝑈 ‘ 𝑆 )  =  ∅ ) | 
						
							| 34 | 1 2 3 4 5 | lubeldm | ⊢ ( 𝜑  →  ( 𝑆  ∈  dom  𝑈  ↔  ( 𝑆  ⊆  𝐵  ∧  ∃! 𝑥  ∈  𝐵 𝜓 ) ) ) | 
						
							| 35 | 34 | biimprd | ⊢ ( 𝜑  →  ( ( 𝑆  ⊆  𝐵  ∧  ∃! 𝑥  ∈  𝐵 𝜓 )  →  𝑆  ∈  dom  𝑈 ) ) | 
						
							| 36 | 6 35 | mpand | ⊢ ( 𝜑  →  ( ∃! 𝑥  ∈  𝐵 𝜓  →  𝑆  ∈  dom  𝑈 ) ) | 
						
							| 37 | 36 | con3dimp | ⊢ ( ( 𝜑  ∧  ¬  𝑆  ∈  dom  𝑈 )  →  ¬  ∃! 𝑥  ∈  𝐵 𝜓 ) | 
						
							| 38 |  | riotaund | ⊢ ( ¬  ∃! 𝑥  ∈  𝐵 𝜓  →  ( ℩ 𝑥  ∈  𝐵 𝜓 )  =  ∅ ) | 
						
							| 39 | 37 38 | syl | ⊢ ( ( 𝜑  ∧  ¬  𝑆  ∈  dom  𝑈 )  →  ( ℩ 𝑥  ∈  𝐵 𝜓 )  =  ∅ ) | 
						
							| 40 | 33 39 | eqtr4d | ⊢ ( ( 𝜑  ∧  ¬  𝑆  ∈  dom  𝑈 )  →  ( 𝑈 ‘ 𝑆 )  =  ( ℩ 𝑥  ∈  𝐵 𝜓 ) ) | 
						
							| 41 | 31 40 | pm2.61dan | ⊢ ( 𝜑  →  ( 𝑈 ‘ 𝑆 )  =  ( ℩ 𝑥  ∈  𝐵 𝜓 ) ) |