| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lvecindp.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
| 2 |
|
lvecindp.p |
⊢ + = ( +g ‘ 𝑊 ) |
| 3 |
|
lvecindp.f |
⊢ 𝐹 = ( Scalar ‘ 𝑊 ) |
| 4 |
|
lvecindp.k |
⊢ 𝐾 = ( Base ‘ 𝐹 ) |
| 5 |
|
lvecindp.t |
⊢ · = ( ·𝑠 ‘ 𝑊 ) |
| 6 |
|
lvecindp.s |
⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) |
| 7 |
|
lvecindp.w |
⊢ ( 𝜑 → 𝑊 ∈ LVec ) |
| 8 |
|
lvecindp.u |
⊢ ( 𝜑 → 𝑈 ∈ 𝑆 ) |
| 9 |
|
lvecindp.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
| 10 |
|
lvecindp.n |
⊢ ( 𝜑 → ¬ 𝑋 ∈ 𝑈 ) |
| 11 |
|
lvecindp.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝑈 ) |
| 12 |
|
lvecindp.z |
⊢ ( 𝜑 → 𝑍 ∈ 𝑈 ) |
| 13 |
|
lvecindp.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝐾 ) |
| 14 |
|
lvecindp.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝐾 ) |
| 15 |
|
lvecindp.e |
⊢ ( 𝜑 → ( ( 𝐴 · 𝑋 ) + 𝑌 ) = ( ( 𝐵 · 𝑋 ) + 𝑍 ) ) |
| 16 |
|
eqid |
⊢ ( 0g ‘ 𝑊 ) = ( 0g ‘ 𝑊 ) |
| 17 |
|
eqid |
⊢ ( Cntz ‘ 𝑊 ) = ( Cntz ‘ 𝑊 ) |
| 18 |
|
lveclmod |
⊢ ( 𝑊 ∈ LVec → 𝑊 ∈ LMod ) |
| 19 |
7 18
|
syl |
⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
| 20 |
|
eqid |
⊢ ( LSpan ‘ 𝑊 ) = ( LSpan ‘ 𝑊 ) |
| 21 |
1 20
|
lspsnsubg |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → ( ( LSpan ‘ 𝑊 ) ‘ { 𝑋 } ) ∈ ( SubGrp ‘ 𝑊 ) ) |
| 22 |
19 9 21
|
syl2anc |
⊢ ( 𝜑 → ( ( LSpan ‘ 𝑊 ) ‘ { 𝑋 } ) ∈ ( SubGrp ‘ 𝑊 ) ) |
| 23 |
6
|
lsssssubg |
⊢ ( 𝑊 ∈ LMod → 𝑆 ⊆ ( SubGrp ‘ 𝑊 ) ) |
| 24 |
19 23
|
syl |
⊢ ( 𝜑 → 𝑆 ⊆ ( SubGrp ‘ 𝑊 ) ) |
| 25 |
24 8
|
sseldd |
⊢ ( 𝜑 → 𝑈 ∈ ( SubGrp ‘ 𝑊 ) ) |
| 26 |
1 16 20 6 7 8 9 10
|
lspdisj |
⊢ ( 𝜑 → ( ( ( LSpan ‘ 𝑊 ) ‘ { 𝑋 } ) ∩ 𝑈 ) = { ( 0g ‘ 𝑊 ) } ) |
| 27 |
|
lmodabl |
⊢ ( 𝑊 ∈ LMod → 𝑊 ∈ Abel ) |
| 28 |
19 27
|
syl |
⊢ ( 𝜑 → 𝑊 ∈ Abel ) |
| 29 |
17 28 22 25
|
ablcntzd |
⊢ ( 𝜑 → ( ( LSpan ‘ 𝑊 ) ‘ { 𝑋 } ) ⊆ ( ( Cntz ‘ 𝑊 ) ‘ 𝑈 ) ) |
| 30 |
1 5 3 4 20 19 13 9
|
ellspsni |
⊢ ( 𝜑 → ( 𝐴 · 𝑋 ) ∈ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑋 } ) ) |
| 31 |
1 5 3 4 20 19 14 9
|
ellspsni |
⊢ ( 𝜑 → ( 𝐵 · 𝑋 ) ∈ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑋 } ) ) |
| 32 |
2 16 17 22 25 26 29 30 31 11 12 15
|
subgdisj1 |
⊢ ( 𝜑 → ( 𝐴 · 𝑋 ) = ( 𝐵 · 𝑋 ) ) |
| 33 |
16 6 19 8 10
|
lssvneln0 |
⊢ ( 𝜑 → 𝑋 ≠ ( 0g ‘ 𝑊 ) ) |
| 34 |
1 5 3 4 16 7 13 14 9 33
|
lvecvscan2 |
⊢ ( 𝜑 → ( ( 𝐴 · 𝑋 ) = ( 𝐵 · 𝑋 ) ↔ 𝐴 = 𝐵 ) ) |
| 35 |
32 34
|
mpbid |
⊢ ( 𝜑 → 𝐴 = 𝐵 ) |
| 36 |
2 16 17 22 25 26 29 30 31 11 12 15
|
subgdisj2 |
⊢ ( 𝜑 → 𝑌 = 𝑍 ) |
| 37 |
35 36
|
jca |
⊢ ( 𝜑 → ( 𝐴 = 𝐵 ∧ 𝑌 = 𝑍 ) ) |