Step |
Hyp |
Ref |
Expression |
1 |
|
lvecindp2.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
2 |
|
lvecindp2.p |
⊢ + = ( +g ‘ 𝑊 ) |
3 |
|
lvecindp2.f |
⊢ 𝐹 = ( Scalar ‘ 𝑊 ) |
4 |
|
lvecindp2.k |
⊢ 𝐾 = ( Base ‘ 𝐹 ) |
5 |
|
lvecindp2.t |
⊢ · = ( ·𝑠 ‘ 𝑊 ) |
6 |
|
lvecindp2.o |
⊢ 0 = ( 0g ‘ 𝑊 ) |
7 |
|
lvecindp2.n |
⊢ 𝑁 = ( LSpan ‘ 𝑊 ) |
8 |
|
lvecindp2.w |
⊢ ( 𝜑 → 𝑊 ∈ LVec ) |
9 |
|
lvecindp2.x |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝑉 ∖ { 0 } ) ) |
10 |
|
lvecindp2.y |
⊢ ( 𝜑 → 𝑌 ∈ ( 𝑉 ∖ { 0 } ) ) |
11 |
|
lvecindp2.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝐾 ) |
12 |
|
lvecindp2.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝐾 ) |
13 |
|
lvecindp2.c |
⊢ ( 𝜑 → 𝐶 ∈ 𝐾 ) |
14 |
|
lvecindp2.d |
⊢ ( 𝜑 → 𝐷 ∈ 𝐾 ) |
15 |
|
lvecindp2.q |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) ) |
16 |
|
lvecindp2.e |
⊢ ( 𝜑 → ( ( 𝐴 · 𝑋 ) + ( 𝐵 · 𝑌 ) ) = ( ( 𝐶 · 𝑋 ) + ( 𝐷 · 𝑌 ) ) ) |
17 |
|
eqid |
⊢ ( Cntz ‘ 𝑊 ) = ( Cntz ‘ 𝑊 ) |
18 |
|
lveclmod |
⊢ ( 𝑊 ∈ LVec → 𝑊 ∈ LMod ) |
19 |
8 18
|
syl |
⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
20 |
9
|
eldifad |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
21 |
1 7
|
lspsnsubg |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → ( 𝑁 ‘ { 𝑋 } ) ∈ ( SubGrp ‘ 𝑊 ) ) |
22 |
19 20 21
|
syl2anc |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ∈ ( SubGrp ‘ 𝑊 ) ) |
23 |
10
|
eldifad |
⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) |
24 |
1 7
|
lspsnsubg |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑌 ∈ 𝑉 ) → ( 𝑁 ‘ { 𝑌 } ) ∈ ( SubGrp ‘ 𝑊 ) ) |
25 |
19 23 24
|
syl2anc |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑌 } ) ∈ ( SubGrp ‘ 𝑊 ) ) |
26 |
1 6 7 8 20 23 15
|
lspdisj2 |
⊢ ( 𝜑 → ( ( 𝑁 ‘ { 𝑋 } ) ∩ ( 𝑁 ‘ { 𝑌 } ) ) = { 0 } ) |
27 |
|
lmodabl |
⊢ ( 𝑊 ∈ LMod → 𝑊 ∈ Abel ) |
28 |
19 27
|
syl |
⊢ ( 𝜑 → 𝑊 ∈ Abel ) |
29 |
17 28 22 25
|
ablcntzd |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ⊆ ( ( Cntz ‘ 𝑊 ) ‘ ( 𝑁 ‘ { 𝑌 } ) ) ) |
30 |
1 5 3 4 7 19 11 20
|
lspsneli |
⊢ ( 𝜑 → ( 𝐴 · 𝑋 ) ∈ ( 𝑁 ‘ { 𝑋 } ) ) |
31 |
1 5 3 4 7 19 13 20
|
lspsneli |
⊢ ( 𝜑 → ( 𝐶 · 𝑋 ) ∈ ( 𝑁 ‘ { 𝑋 } ) ) |
32 |
1 5 3 4 7 19 12 23
|
lspsneli |
⊢ ( 𝜑 → ( 𝐵 · 𝑌 ) ∈ ( 𝑁 ‘ { 𝑌 } ) ) |
33 |
1 5 3 4 7 19 14 23
|
lspsneli |
⊢ ( 𝜑 → ( 𝐷 · 𝑌 ) ∈ ( 𝑁 ‘ { 𝑌 } ) ) |
34 |
2 6 17 22 25 26 29 30 31 32 33
|
subgdisjb |
⊢ ( 𝜑 → ( ( ( 𝐴 · 𝑋 ) + ( 𝐵 · 𝑌 ) ) = ( ( 𝐶 · 𝑋 ) + ( 𝐷 · 𝑌 ) ) ↔ ( ( 𝐴 · 𝑋 ) = ( 𝐶 · 𝑋 ) ∧ ( 𝐵 · 𝑌 ) = ( 𝐷 · 𝑌 ) ) ) ) |
35 |
16 34
|
mpbid |
⊢ ( 𝜑 → ( ( 𝐴 · 𝑋 ) = ( 𝐶 · 𝑋 ) ∧ ( 𝐵 · 𝑌 ) = ( 𝐷 · 𝑌 ) ) ) |
36 |
|
eldifsni |
⊢ ( 𝑋 ∈ ( 𝑉 ∖ { 0 } ) → 𝑋 ≠ 0 ) |
37 |
9 36
|
syl |
⊢ ( 𝜑 → 𝑋 ≠ 0 ) |
38 |
1 5 3 4 6 8 11 13 20 37
|
lvecvscan2 |
⊢ ( 𝜑 → ( ( 𝐴 · 𝑋 ) = ( 𝐶 · 𝑋 ) ↔ 𝐴 = 𝐶 ) ) |
39 |
|
eldifsni |
⊢ ( 𝑌 ∈ ( 𝑉 ∖ { 0 } ) → 𝑌 ≠ 0 ) |
40 |
10 39
|
syl |
⊢ ( 𝜑 → 𝑌 ≠ 0 ) |
41 |
1 5 3 4 6 8 12 14 23 40
|
lvecvscan2 |
⊢ ( 𝜑 → ( ( 𝐵 · 𝑌 ) = ( 𝐷 · 𝑌 ) ↔ 𝐵 = 𝐷 ) ) |
42 |
38 41
|
anbi12d |
⊢ ( 𝜑 → ( ( ( 𝐴 · 𝑋 ) = ( 𝐶 · 𝑋 ) ∧ ( 𝐵 · 𝑌 ) = ( 𝐷 · 𝑌 ) ) ↔ ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) ) |
43 |
35 42
|
mpbid |
⊢ ( 𝜑 → ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) |