Step |
Hyp |
Ref |
Expression |
1 |
|
lvecinv.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
2 |
|
lvecinv.t |
⊢ · = ( ·𝑠 ‘ 𝑊 ) |
3 |
|
lvecinv.f |
⊢ 𝐹 = ( Scalar ‘ 𝑊 ) |
4 |
|
lvecinv.k |
⊢ 𝐾 = ( Base ‘ 𝐹 ) |
5 |
|
lvecinv.o |
⊢ 0 = ( 0g ‘ 𝐹 ) |
6 |
|
lvecinv.i |
⊢ 𝐼 = ( invr ‘ 𝐹 ) |
7 |
|
lvecinv.w |
⊢ ( 𝜑 → 𝑊 ∈ LVec ) |
8 |
|
lvecinv.a |
⊢ ( 𝜑 → 𝐴 ∈ ( 𝐾 ∖ { 0 } ) ) |
9 |
|
lvecinv.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
10 |
|
lvecinv.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) |
11 |
|
oveq2 |
⊢ ( 𝑋 = ( 𝐴 · 𝑌 ) → ( ( 𝐼 ‘ 𝐴 ) · 𝑋 ) = ( ( 𝐼 ‘ 𝐴 ) · ( 𝐴 · 𝑌 ) ) ) |
12 |
3
|
lvecdrng |
⊢ ( 𝑊 ∈ LVec → 𝐹 ∈ DivRing ) |
13 |
7 12
|
syl |
⊢ ( 𝜑 → 𝐹 ∈ DivRing ) |
14 |
8
|
eldifad |
⊢ ( 𝜑 → 𝐴 ∈ 𝐾 ) |
15 |
|
eldifsni |
⊢ ( 𝐴 ∈ ( 𝐾 ∖ { 0 } ) → 𝐴 ≠ 0 ) |
16 |
8 15
|
syl |
⊢ ( 𝜑 → 𝐴 ≠ 0 ) |
17 |
|
eqid |
⊢ ( .r ‘ 𝐹 ) = ( .r ‘ 𝐹 ) |
18 |
|
eqid |
⊢ ( 1r ‘ 𝐹 ) = ( 1r ‘ 𝐹 ) |
19 |
4 5 17 18 6
|
drnginvrl |
⊢ ( ( 𝐹 ∈ DivRing ∧ 𝐴 ∈ 𝐾 ∧ 𝐴 ≠ 0 ) → ( ( 𝐼 ‘ 𝐴 ) ( .r ‘ 𝐹 ) 𝐴 ) = ( 1r ‘ 𝐹 ) ) |
20 |
13 14 16 19
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝐼 ‘ 𝐴 ) ( .r ‘ 𝐹 ) 𝐴 ) = ( 1r ‘ 𝐹 ) ) |
21 |
20
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 𝐼 ‘ 𝐴 ) ( .r ‘ 𝐹 ) 𝐴 ) · 𝑌 ) = ( ( 1r ‘ 𝐹 ) · 𝑌 ) ) |
22 |
|
lveclmod |
⊢ ( 𝑊 ∈ LVec → 𝑊 ∈ LMod ) |
23 |
7 22
|
syl |
⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
24 |
4 5 6
|
drnginvrcl |
⊢ ( ( 𝐹 ∈ DivRing ∧ 𝐴 ∈ 𝐾 ∧ 𝐴 ≠ 0 ) → ( 𝐼 ‘ 𝐴 ) ∈ 𝐾 ) |
25 |
13 14 16 24
|
syl3anc |
⊢ ( 𝜑 → ( 𝐼 ‘ 𝐴 ) ∈ 𝐾 ) |
26 |
1 3 2 4 17
|
lmodvsass |
⊢ ( ( 𝑊 ∈ LMod ∧ ( ( 𝐼 ‘ 𝐴 ) ∈ 𝐾 ∧ 𝐴 ∈ 𝐾 ∧ 𝑌 ∈ 𝑉 ) ) → ( ( ( 𝐼 ‘ 𝐴 ) ( .r ‘ 𝐹 ) 𝐴 ) · 𝑌 ) = ( ( 𝐼 ‘ 𝐴 ) · ( 𝐴 · 𝑌 ) ) ) |
27 |
23 25 14 10 26
|
syl13anc |
⊢ ( 𝜑 → ( ( ( 𝐼 ‘ 𝐴 ) ( .r ‘ 𝐹 ) 𝐴 ) · 𝑌 ) = ( ( 𝐼 ‘ 𝐴 ) · ( 𝐴 · 𝑌 ) ) ) |
28 |
1 3 2 18
|
lmodvs1 |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑌 ∈ 𝑉 ) → ( ( 1r ‘ 𝐹 ) · 𝑌 ) = 𝑌 ) |
29 |
23 10 28
|
syl2anc |
⊢ ( 𝜑 → ( ( 1r ‘ 𝐹 ) · 𝑌 ) = 𝑌 ) |
30 |
21 27 29
|
3eqtr3d |
⊢ ( 𝜑 → ( ( 𝐼 ‘ 𝐴 ) · ( 𝐴 · 𝑌 ) ) = 𝑌 ) |
31 |
11 30
|
sylan9eqr |
⊢ ( ( 𝜑 ∧ 𝑋 = ( 𝐴 · 𝑌 ) ) → ( ( 𝐼 ‘ 𝐴 ) · 𝑋 ) = 𝑌 ) |
32 |
4 5 17 18 6
|
drnginvrr |
⊢ ( ( 𝐹 ∈ DivRing ∧ 𝐴 ∈ 𝐾 ∧ 𝐴 ≠ 0 ) → ( 𝐴 ( .r ‘ 𝐹 ) ( 𝐼 ‘ 𝐴 ) ) = ( 1r ‘ 𝐹 ) ) |
33 |
13 14 16 32
|
syl3anc |
⊢ ( 𝜑 → ( 𝐴 ( .r ‘ 𝐹 ) ( 𝐼 ‘ 𝐴 ) ) = ( 1r ‘ 𝐹 ) ) |
34 |
33
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝐴 ( .r ‘ 𝐹 ) ( 𝐼 ‘ 𝐴 ) ) · 𝑋 ) = ( ( 1r ‘ 𝐹 ) · 𝑋 ) ) |
35 |
1 3 2 4 17
|
lmodvsass |
⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝐴 ∈ 𝐾 ∧ ( 𝐼 ‘ 𝐴 ) ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ) ) → ( ( 𝐴 ( .r ‘ 𝐹 ) ( 𝐼 ‘ 𝐴 ) ) · 𝑋 ) = ( 𝐴 · ( ( 𝐼 ‘ 𝐴 ) · 𝑋 ) ) ) |
36 |
23 14 25 9 35
|
syl13anc |
⊢ ( 𝜑 → ( ( 𝐴 ( .r ‘ 𝐹 ) ( 𝐼 ‘ 𝐴 ) ) · 𝑋 ) = ( 𝐴 · ( ( 𝐼 ‘ 𝐴 ) · 𝑋 ) ) ) |
37 |
1 3 2 18
|
lmodvs1 |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → ( ( 1r ‘ 𝐹 ) · 𝑋 ) = 𝑋 ) |
38 |
23 9 37
|
syl2anc |
⊢ ( 𝜑 → ( ( 1r ‘ 𝐹 ) · 𝑋 ) = 𝑋 ) |
39 |
34 36 38
|
3eqtr3rd |
⊢ ( 𝜑 → 𝑋 = ( 𝐴 · ( ( 𝐼 ‘ 𝐴 ) · 𝑋 ) ) ) |
40 |
|
oveq2 |
⊢ ( ( ( 𝐼 ‘ 𝐴 ) · 𝑋 ) = 𝑌 → ( 𝐴 · ( ( 𝐼 ‘ 𝐴 ) · 𝑋 ) ) = ( 𝐴 · 𝑌 ) ) |
41 |
39 40
|
sylan9eq |
⊢ ( ( 𝜑 ∧ ( ( 𝐼 ‘ 𝐴 ) · 𝑋 ) = 𝑌 ) → 𝑋 = ( 𝐴 · 𝑌 ) ) |
42 |
31 41
|
impbida |
⊢ ( 𝜑 → ( 𝑋 = ( 𝐴 · 𝑌 ) ↔ ( ( 𝐼 ‘ 𝐴 ) · 𝑋 ) = 𝑌 ) ) |
43 |
|
eqcom |
⊢ ( ( ( 𝐼 ‘ 𝐴 ) · 𝑋 ) = 𝑌 ↔ 𝑌 = ( ( 𝐼 ‘ 𝐴 ) · 𝑋 ) ) |
44 |
42 43
|
bitrdi |
⊢ ( 𝜑 → ( 𝑋 = ( 𝐴 · 𝑌 ) ↔ 𝑌 = ( ( 𝐼 ‘ 𝐴 ) · 𝑋 ) ) ) |