Step |
Hyp |
Ref |
Expression |
1 |
|
lvecprop2d.b1 |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐾 ) ) |
2 |
|
lvecprop2d.b2 |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐿 ) ) |
3 |
|
lvecprop2d.f |
⊢ 𝐹 = ( Scalar ‘ 𝐾 ) |
4 |
|
lvecprop2d.g |
⊢ 𝐺 = ( Scalar ‘ 𝐿 ) |
5 |
|
lvecprop2d.p1 |
⊢ ( 𝜑 → 𝑃 = ( Base ‘ 𝐹 ) ) |
6 |
|
lvecprop2d.p2 |
⊢ ( 𝜑 → 𝑃 = ( Base ‘ 𝐺 ) ) |
7 |
|
lvecprop2d.1 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) |
8 |
|
lvecprop2d.2 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑃 ) ) → ( 𝑥 ( +g ‘ 𝐹 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) |
9 |
|
lvecprop2d.3 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑃 ) ) → ( 𝑥 ( .r ‘ 𝐹 ) 𝑦 ) = ( 𝑥 ( .r ‘ 𝐺 ) 𝑦 ) ) |
10 |
|
lvecprop2d.4 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( ·𝑠 ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( ·𝑠 ‘ 𝐿 ) 𝑦 ) ) |
11 |
1 2 3 4 5 6 7 8 9 10
|
lmodprop2d |
⊢ ( 𝜑 → ( 𝐾 ∈ LMod ↔ 𝐿 ∈ LMod ) ) |
12 |
5 6 8 9
|
drngpropd |
⊢ ( 𝜑 → ( 𝐹 ∈ DivRing ↔ 𝐺 ∈ DivRing ) ) |
13 |
11 12
|
anbi12d |
⊢ ( 𝜑 → ( ( 𝐾 ∈ LMod ∧ 𝐹 ∈ DivRing ) ↔ ( 𝐿 ∈ LMod ∧ 𝐺 ∈ DivRing ) ) ) |
14 |
3
|
islvec |
⊢ ( 𝐾 ∈ LVec ↔ ( 𝐾 ∈ LMod ∧ 𝐹 ∈ DivRing ) ) |
15 |
4
|
islvec |
⊢ ( 𝐿 ∈ LVec ↔ ( 𝐿 ∈ LMod ∧ 𝐺 ∈ DivRing ) ) |
16 |
13 14 15
|
3bitr4g |
⊢ ( 𝜑 → ( 𝐾 ∈ LVec ↔ 𝐿 ∈ LVec ) ) |