| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							lvecprop2d.b1 | 
							⊢ ( 𝜑  →  𝐵  =  ( Base ‘ 𝐾 ) )  | 
						
						
							| 2 | 
							
								
							 | 
							lvecprop2d.b2 | 
							⊢ ( 𝜑  →  𝐵  =  ( Base ‘ 𝐿 ) )  | 
						
						
							| 3 | 
							
								
							 | 
							lvecprop2d.f | 
							⊢ 𝐹  =  ( Scalar ‘ 𝐾 )  | 
						
						
							| 4 | 
							
								
							 | 
							lvecprop2d.g | 
							⊢ 𝐺  =  ( Scalar ‘ 𝐿 )  | 
						
						
							| 5 | 
							
								
							 | 
							lvecprop2d.p1 | 
							⊢ ( 𝜑  →  𝑃  =  ( Base ‘ 𝐹 ) )  | 
						
						
							| 6 | 
							
								
							 | 
							lvecprop2d.p2 | 
							⊢ ( 𝜑  →  𝑃  =  ( Base ‘ 𝐺 ) )  | 
						
						
							| 7 | 
							
								
							 | 
							lvecprop2d.1 | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 )  =  ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) )  | 
						
						
							| 8 | 
							
								
							 | 
							lvecprop2d.2 | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝑃  ∧  𝑦  ∈  𝑃 ) )  →  ( 𝑥 ( +g ‘ 𝐹 ) 𝑦 )  =  ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) )  | 
						
						
							| 9 | 
							
								
							 | 
							lvecprop2d.3 | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝑃  ∧  𝑦  ∈  𝑃 ) )  →  ( 𝑥 ( .r ‘ 𝐹 ) 𝑦 )  =  ( 𝑥 ( .r ‘ 𝐺 ) 𝑦 ) )  | 
						
						
							| 10 | 
							
								
							 | 
							lvecprop2d.4 | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝑃  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝑥 (  ·𝑠  ‘ 𝐾 ) 𝑦 )  =  ( 𝑥 (  ·𝑠  ‘ 𝐿 ) 𝑦 ) )  | 
						
						
							| 11 | 
							
								1 2 3 4 5 6 7 8 9 10
							 | 
							lmodprop2d | 
							⊢ ( 𝜑  →  ( 𝐾  ∈  LMod  ↔  𝐿  ∈  LMod ) )  | 
						
						
							| 12 | 
							
								5 6 8 9
							 | 
							drngpropd | 
							⊢ ( 𝜑  →  ( 𝐹  ∈  DivRing  ↔  𝐺  ∈  DivRing ) )  | 
						
						
							| 13 | 
							
								11 12
							 | 
							anbi12d | 
							⊢ ( 𝜑  →  ( ( 𝐾  ∈  LMod  ∧  𝐹  ∈  DivRing )  ↔  ( 𝐿  ∈  LMod  ∧  𝐺  ∈  DivRing ) ) )  | 
						
						
							| 14 | 
							
								3
							 | 
							islvec | 
							⊢ ( 𝐾  ∈  LVec  ↔  ( 𝐾  ∈  LMod  ∧  𝐹  ∈  DivRing ) )  | 
						
						
							| 15 | 
							
								4
							 | 
							islvec | 
							⊢ ( 𝐿  ∈  LVec  ↔  ( 𝐿  ∈  LMod  ∧  𝐺  ∈  DivRing ) )  | 
						
						
							| 16 | 
							
								13 14 15
							 | 
							3bitr4g | 
							⊢ ( 𝜑  →  ( 𝐾  ∈  LVec  ↔  𝐿  ∈  LVec ) )  |