Metamath Proof Explorer


Theorem lvecprop2d

Description: If two structures have the same components (properties), one is a left vector space iff the other one is. This version of lvecpropd also breaks up the components of the scalar ring. (Contributed by Mario Carneiro, 27-Jun-2015)

Ref Expression
Hypotheses lvecprop2d.b1 ( 𝜑𝐵 = ( Base ‘ 𝐾 ) )
lvecprop2d.b2 ( 𝜑𝐵 = ( Base ‘ 𝐿 ) )
lvecprop2d.f 𝐹 = ( Scalar ‘ 𝐾 )
lvecprop2d.g 𝐺 = ( Scalar ‘ 𝐿 )
lvecprop2d.p1 ( 𝜑𝑃 = ( Base ‘ 𝐹 ) )
lvecprop2d.p2 ( 𝜑𝑃 = ( Base ‘ 𝐺 ) )
lvecprop2d.1 ( ( 𝜑 ∧ ( 𝑥𝐵𝑦𝐵 ) ) → ( 𝑥 ( +g𝐾 ) 𝑦 ) = ( 𝑥 ( +g𝐿 ) 𝑦 ) )
lvecprop2d.2 ( ( 𝜑 ∧ ( 𝑥𝑃𝑦𝑃 ) ) → ( 𝑥 ( +g𝐹 ) 𝑦 ) = ( 𝑥 ( +g𝐺 ) 𝑦 ) )
lvecprop2d.3 ( ( 𝜑 ∧ ( 𝑥𝑃𝑦𝑃 ) ) → ( 𝑥 ( .r𝐹 ) 𝑦 ) = ( 𝑥 ( .r𝐺 ) 𝑦 ) )
lvecprop2d.4 ( ( 𝜑 ∧ ( 𝑥𝑃𝑦𝐵 ) ) → ( 𝑥 ( ·𝑠𝐾 ) 𝑦 ) = ( 𝑥 ( ·𝑠𝐿 ) 𝑦 ) )
Assertion lvecprop2d ( 𝜑 → ( 𝐾 ∈ LVec ↔ 𝐿 ∈ LVec ) )

Proof

Step Hyp Ref Expression
1 lvecprop2d.b1 ( 𝜑𝐵 = ( Base ‘ 𝐾 ) )
2 lvecprop2d.b2 ( 𝜑𝐵 = ( Base ‘ 𝐿 ) )
3 lvecprop2d.f 𝐹 = ( Scalar ‘ 𝐾 )
4 lvecprop2d.g 𝐺 = ( Scalar ‘ 𝐿 )
5 lvecprop2d.p1 ( 𝜑𝑃 = ( Base ‘ 𝐹 ) )
6 lvecprop2d.p2 ( 𝜑𝑃 = ( Base ‘ 𝐺 ) )
7 lvecprop2d.1 ( ( 𝜑 ∧ ( 𝑥𝐵𝑦𝐵 ) ) → ( 𝑥 ( +g𝐾 ) 𝑦 ) = ( 𝑥 ( +g𝐿 ) 𝑦 ) )
8 lvecprop2d.2 ( ( 𝜑 ∧ ( 𝑥𝑃𝑦𝑃 ) ) → ( 𝑥 ( +g𝐹 ) 𝑦 ) = ( 𝑥 ( +g𝐺 ) 𝑦 ) )
9 lvecprop2d.3 ( ( 𝜑 ∧ ( 𝑥𝑃𝑦𝑃 ) ) → ( 𝑥 ( .r𝐹 ) 𝑦 ) = ( 𝑥 ( .r𝐺 ) 𝑦 ) )
10 lvecprop2d.4 ( ( 𝜑 ∧ ( 𝑥𝑃𝑦𝐵 ) ) → ( 𝑥 ( ·𝑠𝐾 ) 𝑦 ) = ( 𝑥 ( ·𝑠𝐿 ) 𝑦 ) )
11 1 2 3 4 5 6 7 8 9 10 lmodprop2d ( 𝜑 → ( 𝐾 ∈ LMod ↔ 𝐿 ∈ LMod ) )
12 5 6 8 9 drngpropd ( 𝜑 → ( 𝐹 ∈ DivRing ↔ 𝐺 ∈ DivRing ) )
13 11 12 anbi12d ( 𝜑 → ( ( 𝐾 ∈ LMod ∧ 𝐹 ∈ DivRing ) ↔ ( 𝐿 ∈ LMod ∧ 𝐺 ∈ DivRing ) ) )
14 3 islvec ( 𝐾 ∈ LVec ↔ ( 𝐾 ∈ LMod ∧ 𝐹 ∈ DivRing ) )
15 4 islvec ( 𝐿 ∈ LVec ↔ ( 𝐿 ∈ LMod ∧ 𝐺 ∈ DivRing ) )
16 13 14 15 3bitr4g ( 𝜑 → ( 𝐾 ∈ LVec ↔ 𝐿 ∈ LVec ) )