| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lvecpropd.1 | ⊢ ( 𝜑  →  𝐵  =  ( Base ‘ 𝐾 ) ) | 
						
							| 2 |  | lvecpropd.2 | ⊢ ( 𝜑  →  𝐵  =  ( Base ‘ 𝐿 ) ) | 
						
							| 3 |  | lvecpropd.3 | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 )  =  ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) | 
						
							| 4 |  | lvecpropd.4 | ⊢ ( 𝜑  →  𝐹  =  ( Scalar ‘ 𝐾 ) ) | 
						
							| 5 |  | lvecpropd.5 | ⊢ ( 𝜑  →  𝐹  =  ( Scalar ‘ 𝐿 ) ) | 
						
							| 6 |  | lvecpropd.6 | ⊢ 𝑃  =  ( Base ‘ 𝐹 ) | 
						
							| 7 |  | lvecpropd.7 | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝑃  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝑥 (  ·𝑠  ‘ 𝐾 ) 𝑦 )  =  ( 𝑥 (  ·𝑠  ‘ 𝐿 ) 𝑦 ) ) | 
						
							| 8 | 1 2 3 4 5 6 7 | lmodpropd | ⊢ ( 𝜑  →  ( 𝐾  ∈  LMod  ↔  𝐿  ∈  LMod ) ) | 
						
							| 9 | 4 5 | eqtr3d | ⊢ ( 𝜑  →  ( Scalar ‘ 𝐾 )  =  ( Scalar ‘ 𝐿 ) ) | 
						
							| 10 | 9 | eleq1d | ⊢ ( 𝜑  →  ( ( Scalar ‘ 𝐾 )  ∈  DivRing  ↔  ( Scalar ‘ 𝐿 )  ∈  DivRing ) ) | 
						
							| 11 | 8 10 | anbi12d | ⊢ ( 𝜑  →  ( ( 𝐾  ∈  LMod  ∧  ( Scalar ‘ 𝐾 )  ∈  DivRing )  ↔  ( 𝐿  ∈  LMod  ∧  ( Scalar ‘ 𝐿 )  ∈  DivRing ) ) ) | 
						
							| 12 |  | eqid | ⊢ ( Scalar ‘ 𝐾 )  =  ( Scalar ‘ 𝐾 ) | 
						
							| 13 | 12 | islvec | ⊢ ( 𝐾  ∈  LVec  ↔  ( 𝐾  ∈  LMod  ∧  ( Scalar ‘ 𝐾 )  ∈  DivRing ) ) | 
						
							| 14 |  | eqid | ⊢ ( Scalar ‘ 𝐿 )  =  ( Scalar ‘ 𝐿 ) | 
						
							| 15 | 14 | islvec | ⊢ ( 𝐿  ∈  LVec  ↔  ( 𝐿  ∈  LMod  ∧  ( Scalar ‘ 𝐿 )  ∈  DivRing ) ) | 
						
							| 16 | 11 13 15 | 3bitr4g | ⊢ ( 𝜑  →  ( 𝐾  ∈  LVec  ↔  𝐿  ∈  LVec ) ) |