| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lvecmul0or.v | ⊢ 𝑉  =  ( Base ‘ 𝑊 ) | 
						
							| 2 |  | lvecmul0or.s | ⊢  ·   =  (  ·𝑠  ‘ 𝑊 ) | 
						
							| 3 |  | lvecmul0or.f | ⊢ 𝐹  =  ( Scalar ‘ 𝑊 ) | 
						
							| 4 |  | lvecmul0or.k | ⊢ 𝐾  =  ( Base ‘ 𝐹 ) | 
						
							| 5 |  | lvecmul0or.o | ⊢ 𝑂  =  ( 0g ‘ 𝐹 ) | 
						
							| 6 |  | lvecmul0or.z | ⊢  0   =  ( 0g ‘ 𝑊 ) | 
						
							| 7 |  | lvecmul0or.w | ⊢ ( 𝜑  →  𝑊  ∈  LVec ) | 
						
							| 8 |  | lvecmul0or.a | ⊢ ( 𝜑  →  𝐴  ∈  𝐾 ) | 
						
							| 9 |  | lvecmul0or.x | ⊢ ( 𝜑  →  𝑋  ∈  𝑉 ) | 
						
							| 10 |  | df-ne | ⊢ ( 𝐴  ≠  𝑂  ↔  ¬  𝐴  =  𝑂 ) | 
						
							| 11 |  | oveq2 | ⊢ ( ( 𝐴  ·  𝑋 )  =   0   →  ( ( ( invr ‘ 𝐹 ) ‘ 𝐴 )  ·  ( 𝐴  ·  𝑋 ) )  =  ( ( ( invr ‘ 𝐹 ) ‘ 𝐴 )  ·   0  ) ) | 
						
							| 12 | 11 | ad2antlr | ⊢ ( ( ( 𝜑  ∧  ( 𝐴  ·  𝑋 )  =   0  )  ∧  𝐴  ≠  𝑂 )  →  ( ( ( invr ‘ 𝐹 ) ‘ 𝐴 )  ·  ( 𝐴  ·  𝑋 ) )  =  ( ( ( invr ‘ 𝐹 ) ‘ 𝐴 )  ·   0  ) ) | 
						
							| 13 | 7 | adantr | ⊢ ( ( 𝜑  ∧  𝐴  ≠  𝑂 )  →  𝑊  ∈  LVec ) | 
						
							| 14 | 3 | lvecdrng | ⊢ ( 𝑊  ∈  LVec  →  𝐹  ∈  DivRing ) | 
						
							| 15 | 13 14 | syl | ⊢ ( ( 𝜑  ∧  𝐴  ≠  𝑂 )  →  𝐹  ∈  DivRing ) | 
						
							| 16 | 8 | adantr | ⊢ ( ( 𝜑  ∧  𝐴  ≠  𝑂 )  →  𝐴  ∈  𝐾 ) | 
						
							| 17 |  | simpr | ⊢ ( ( 𝜑  ∧  𝐴  ≠  𝑂 )  →  𝐴  ≠  𝑂 ) | 
						
							| 18 |  | eqid | ⊢ ( .r ‘ 𝐹 )  =  ( .r ‘ 𝐹 ) | 
						
							| 19 |  | eqid | ⊢ ( 1r ‘ 𝐹 )  =  ( 1r ‘ 𝐹 ) | 
						
							| 20 |  | eqid | ⊢ ( invr ‘ 𝐹 )  =  ( invr ‘ 𝐹 ) | 
						
							| 21 | 4 5 18 19 20 | drnginvrl | ⊢ ( ( 𝐹  ∈  DivRing  ∧  𝐴  ∈  𝐾  ∧  𝐴  ≠  𝑂 )  →  ( ( ( invr ‘ 𝐹 ) ‘ 𝐴 ) ( .r ‘ 𝐹 ) 𝐴 )  =  ( 1r ‘ 𝐹 ) ) | 
						
							| 22 | 15 16 17 21 | syl3anc | ⊢ ( ( 𝜑  ∧  𝐴  ≠  𝑂 )  →  ( ( ( invr ‘ 𝐹 ) ‘ 𝐴 ) ( .r ‘ 𝐹 ) 𝐴 )  =  ( 1r ‘ 𝐹 ) ) | 
						
							| 23 | 22 | oveq1d | ⊢ ( ( 𝜑  ∧  𝐴  ≠  𝑂 )  →  ( ( ( ( invr ‘ 𝐹 ) ‘ 𝐴 ) ( .r ‘ 𝐹 ) 𝐴 )  ·  𝑋 )  =  ( ( 1r ‘ 𝐹 )  ·  𝑋 ) ) | 
						
							| 24 |  | lveclmod | ⊢ ( 𝑊  ∈  LVec  →  𝑊  ∈  LMod ) | 
						
							| 25 | 7 24 | syl | ⊢ ( 𝜑  →  𝑊  ∈  LMod ) | 
						
							| 26 | 25 | adantr | ⊢ ( ( 𝜑  ∧  𝐴  ≠  𝑂 )  →  𝑊  ∈  LMod ) | 
						
							| 27 | 4 5 20 | drnginvrcl | ⊢ ( ( 𝐹  ∈  DivRing  ∧  𝐴  ∈  𝐾  ∧  𝐴  ≠  𝑂 )  →  ( ( invr ‘ 𝐹 ) ‘ 𝐴 )  ∈  𝐾 ) | 
						
							| 28 | 15 16 17 27 | syl3anc | ⊢ ( ( 𝜑  ∧  𝐴  ≠  𝑂 )  →  ( ( invr ‘ 𝐹 ) ‘ 𝐴 )  ∈  𝐾 ) | 
						
							| 29 | 9 | adantr | ⊢ ( ( 𝜑  ∧  𝐴  ≠  𝑂 )  →  𝑋  ∈  𝑉 ) | 
						
							| 30 | 1 3 2 4 18 | lmodvsass | ⊢ ( ( 𝑊  ∈  LMod  ∧  ( ( ( invr ‘ 𝐹 ) ‘ 𝐴 )  ∈  𝐾  ∧  𝐴  ∈  𝐾  ∧  𝑋  ∈  𝑉 ) )  →  ( ( ( ( invr ‘ 𝐹 ) ‘ 𝐴 ) ( .r ‘ 𝐹 ) 𝐴 )  ·  𝑋 )  =  ( ( ( invr ‘ 𝐹 ) ‘ 𝐴 )  ·  ( 𝐴  ·  𝑋 ) ) ) | 
						
							| 31 | 26 28 16 29 30 | syl13anc | ⊢ ( ( 𝜑  ∧  𝐴  ≠  𝑂 )  →  ( ( ( ( invr ‘ 𝐹 ) ‘ 𝐴 ) ( .r ‘ 𝐹 ) 𝐴 )  ·  𝑋 )  =  ( ( ( invr ‘ 𝐹 ) ‘ 𝐴 )  ·  ( 𝐴  ·  𝑋 ) ) ) | 
						
							| 32 | 1 3 2 19 | lmodvs1 | ⊢ ( ( 𝑊  ∈  LMod  ∧  𝑋  ∈  𝑉 )  →  ( ( 1r ‘ 𝐹 )  ·  𝑋 )  =  𝑋 ) | 
						
							| 33 | 25 9 32 | syl2anc | ⊢ ( 𝜑  →  ( ( 1r ‘ 𝐹 )  ·  𝑋 )  =  𝑋 ) | 
						
							| 34 | 33 | adantr | ⊢ ( ( 𝜑  ∧  𝐴  ≠  𝑂 )  →  ( ( 1r ‘ 𝐹 )  ·  𝑋 )  =  𝑋 ) | 
						
							| 35 | 23 31 34 | 3eqtr3d | ⊢ ( ( 𝜑  ∧  𝐴  ≠  𝑂 )  →  ( ( ( invr ‘ 𝐹 ) ‘ 𝐴 )  ·  ( 𝐴  ·  𝑋 ) )  =  𝑋 ) | 
						
							| 36 | 35 | adantlr | ⊢ ( ( ( 𝜑  ∧  ( 𝐴  ·  𝑋 )  =   0  )  ∧  𝐴  ≠  𝑂 )  →  ( ( ( invr ‘ 𝐹 ) ‘ 𝐴 )  ·  ( 𝐴  ·  𝑋 ) )  =  𝑋 ) | 
						
							| 37 | 25 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝐴  ·  𝑋 )  =   0  )  →  𝑊  ∈  LMod ) | 
						
							| 38 | 37 | adantr | ⊢ ( ( ( 𝜑  ∧  ( 𝐴  ·  𝑋 )  =   0  )  ∧  𝐴  ≠  𝑂 )  →  𝑊  ∈  LMod ) | 
						
							| 39 | 28 | adantlr | ⊢ ( ( ( 𝜑  ∧  ( 𝐴  ·  𝑋 )  =   0  )  ∧  𝐴  ≠  𝑂 )  →  ( ( invr ‘ 𝐹 ) ‘ 𝐴 )  ∈  𝐾 ) | 
						
							| 40 | 3 2 4 6 | lmodvs0 | ⊢ ( ( 𝑊  ∈  LMod  ∧  ( ( invr ‘ 𝐹 ) ‘ 𝐴 )  ∈  𝐾 )  →  ( ( ( invr ‘ 𝐹 ) ‘ 𝐴 )  ·   0  )  =   0  ) | 
						
							| 41 | 38 39 40 | syl2anc | ⊢ ( ( ( 𝜑  ∧  ( 𝐴  ·  𝑋 )  =   0  )  ∧  𝐴  ≠  𝑂 )  →  ( ( ( invr ‘ 𝐹 ) ‘ 𝐴 )  ·   0  )  =   0  ) | 
						
							| 42 | 12 36 41 | 3eqtr3d | ⊢ ( ( ( 𝜑  ∧  ( 𝐴  ·  𝑋 )  =   0  )  ∧  𝐴  ≠  𝑂 )  →  𝑋  =   0  ) | 
						
							| 43 | 42 | ex | ⊢ ( ( 𝜑  ∧  ( 𝐴  ·  𝑋 )  =   0  )  →  ( 𝐴  ≠  𝑂  →  𝑋  =   0  ) ) | 
						
							| 44 | 10 43 | biimtrrid | ⊢ ( ( 𝜑  ∧  ( 𝐴  ·  𝑋 )  =   0  )  →  ( ¬  𝐴  =  𝑂  →  𝑋  =   0  ) ) | 
						
							| 45 | 44 | orrd | ⊢ ( ( 𝜑  ∧  ( 𝐴  ·  𝑋 )  =   0  )  →  ( 𝐴  =  𝑂  ∨  𝑋  =   0  ) ) | 
						
							| 46 | 45 | ex | ⊢ ( 𝜑  →  ( ( 𝐴  ·  𝑋 )  =   0   →  ( 𝐴  =  𝑂  ∨  𝑋  =   0  ) ) ) | 
						
							| 47 | 1 3 2 5 6 | lmod0vs | ⊢ ( ( 𝑊  ∈  LMod  ∧  𝑋  ∈  𝑉 )  →  ( 𝑂  ·  𝑋 )  =   0  ) | 
						
							| 48 | 25 9 47 | syl2anc | ⊢ ( 𝜑  →  ( 𝑂  ·  𝑋 )  =   0  ) | 
						
							| 49 |  | oveq1 | ⊢ ( 𝐴  =  𝑂  →  ( 𝐴  ·  𝑋 )  =  ( 𝑂  ·  𝑋 ) ) | 
						
							| 50 | 49 | eqeq1d | ⊢ ( 𝐴  =  𝑂  →  ( ( 𝐴  ·  𝑋 )  =   0   ↔  ( 𝑂  ·  𝑋 )  =   0  ) ) | 
						
							| 51 | 48 50 | syl5ibrcom | ⊢ ( 𝜑  →  ( 𝐴  =  𝑂  →  ( 𝐴  ·  𝑋 )  =   0  ) ) | 
						
							| 52 | 3 2 4 6 | lmodvs0 | ⊢ ( ( 𝑊  ∈  LMod  ∧  𝐴  ∈  𝐾 )  →  ( 𝐴  ·   0  )  =   0  ) | 
						
							| 53 | 25 8 52 | syl2anc | ⊢ ( 𝜑  →  ( 𝐴  ·   0  )  =   0  ) | 
						
							| 54 |  | oveq2 | ⊢ ( 𝑋  =   0   →  ( 𝐴  ·  𝑋 )  =  ( 𝐴  ·   0  ) ) | 
						
							| 55 | 54 | eqeq1d | ⊢ ( 𝑋  =   0   →  ( ( 𝐴  ·  𝑋 )  =   0   ↔  ( 𝐴  ·   0  )  =   0  ) ) | 
						
							| 56 | 53 55 | syl5ibrcom | ⊢ ( 𝜑  →  ( 𝑋  =   0   →  ( 𝐴  ·  𝑋 )  =   0  ) ) | 
						
							| 57 | 51 56 | jaod | ⊢ ( 𝜑  →  ( ( 𝐴  =  𝑂  ∨  𝑋  =   0  )  →  ( 𝐴  ·  𝑋 )  =   0  ) ) | 
						
							| 58 | 46 57 | impbid | ⊢ ( 𝜑  →  ( ( 𝐴  ·  𝑋 )  =   0   ↔  ( 𝐴  =  𝑂  ∨  𝑋  =   0  ) ) ) |