Step |
Hyp |
Ref |
Expression |
1 |
|
lvecmulcan.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
2 |
|
lvecmulcan.s |
⊢ · = ( ·𝑠 ‘ 𝑊 ) |
3 |
|
lvecmulcan.f |
⊢ 𝐹 = ( Scalar ‘ 𝑊 ) |
4 |
|
lvecmulcan.k |
⊢ 𝐾 = ( Base ‘ 𝐹 ) |
5 |
|
lvecmulcan.o |
⊢ 0 = ( 0g ‘ 𝐹 ) |
6 |
|
lvecmulcan.w |
⊢ ( 𝜑 → 𝑊 ∈ LVec ) |
7 |
|
lvecmulcan.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝐾 ) |
8 |
|
lvecmulcan.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
9 |
|
lvecmulcan.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) |
10 |
|
lvecmulcan.n |
⊢ ( 𝜑 → 𝐴 ≠ 0 ) |
11 |
|
df-ne |
⊢ ( 𝐴 ≠ 0 ↔ ¬ 𝐴 = 0 ) |
12 |
|
biorf |
⊢ ( ¬ 𝐴 = 0 → ( ( 𝑋 ( -g ‘ 𝑊 ) 𝑌 ) = ( 0g ‘ 𝑊 ) ↔ ( 𝐴 = 0 ∨ ( 𝑋 ( -g ‘ 𝑊 ) 𝑌 ) = ( 0g ‘ 𝑊 ) ) ) ) |
13 |
11 12
|
sylbi |
⊢ ( 𝐴 ≠ 0 → ( ( 𝑋 ( -g ‘ 𝑊 ) 𝑌 ) = ( 0g ‘ 𝑊 ) ↔ ( 𝐴 = 0 ∨ ( 𝑋 ( -g ‘ 𝑊 ) 𝑌 ) = ( 0g ‘ 𝑊 ) ) ) ) |
14 |
10 13
|
syl |
⊢ ( 𝜑 → ( ( 𝑋 ( -g ‘ 𝑊 ) 𝑌 ) = ( 0g ‘ 𝑊 ) ↔ ( 𝐴 = 0 ∨ ( 𝑋 ( -g ‘ 𝑊 ) 𝑌 ) = ( 0g ‘ 𝑊 ) ) ) ) |
15 |
|
lveclmod |
⊢ ( 𝑊 ∈ LVec → 𝑊 ∈ LMod ) |
16 |
6 15
|
syl |
⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
17 |
|
eqid |
⊢ ( 0g ‘ 𝑊 ) = ( 0g ‘ 𝑊 ) |
18 |
|
eqid |
⊢ ( -g ‘ 𝑊 ) = ( -g ‘ 𝑊 ) |
19 |
1 17 18
|
lmodsubeq0 |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( ( 𝑋 ( -g ‘ 𝑊 ) 𝑌 ) = ( 0g ‘ 𝑊 ) ↔ 𝑋 = 𝑌 ) ) |
20 |
16 8 9 19
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝑋 ( -g ‘ 𝑊 ) 𝑌 ) = ( 0g ‘ 𝑊 ) ↔ 𝑋 = 𝑌 ) ) |
21 |
1 2 3 4 18 16 7 8 9
|
lmodsubdi |
⊢ ( 𝜑 → ( 𝐴 · ( 𝑋 ( -g ‘ 𝑊 ) 𝑌 ) ) = ( ( 𝐴 · 𝑋 ) ( -g ‘ 𝑊 ) ( 𝐴 · 𝑌 ) ) ) |
22 |
21
|
eqeq1d |
⊢ ( 𝜑 → ( ( 𝐴 · ( 𝑋 ( -g ‘ 𝑊 ) 𝑌 ) ) = ( 0g ‘ 𝑊 ) ↔ ( ( 𝐴 · 𝑋 ) ( -g ‘ 𝑊 ) ( 𝐴 · 𝑌 ) ) = ( 0g ‘ 𝑊 ) ) ) |
23 |
1 18
|
lmodvsubcl |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( 𝑋 ( -g ‘ 𝑊 ) 𝑌 ) ∈ 𝑉 ) |
24 |
16 8 9 23
|
syl3anc |
⊢ ( 𝜑 → ( 𝑋 ( -g ‘ 𝑊 ) 𝑌 ) ∈ 𝑉 ) |
25 |
1 2 3 4 5 17 6 7 24
|
lvecvs0or |
⊢ ( 𝜑 → ( ( 𝐴 · ( 𝑋 ( -g ‘ 𝑊 ) 𝑌 ) ) = ( 0g ‘ 𝑊 ) ↔ ( 𝐴 = 0 ∨ ( 𝑋 ( -g ‘ 𝑊 ) 𝑌 ) = ( 0g ‘ 𝑊 ) ) ) ) |
26 |
1 3 2 4
|
lmodvscl |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐴 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ) → ( 𝐴 · 𝑋 ) ∈ 𝑉 ) |
27 |
16 7 8 26
|
syl3anc |
⊢ ( 𝜑 → ( 𝐴 · 𝑋 ) ∈ 𝑉 ) |
28 |
1 3 2 4
|
lmodvscl |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐴 ∈ 𝐾 ∧ 𝑌 ∈ 𝑉 ) → ( 𝐴 · 𝑌 ) ∈ 𝑉 ) |
29 |
16 7 9 28
|
syl3anc |
⊢ ( 𝜑 → ( 𝐴 · 𝑌 ) ∈ 𝑉 ) |
30 |
1 17 18
|
lmodsubeq0 |
⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝐴 · 𝑋 ) ∈ 𝑉 ∧ ( 𝐴 · 𝑌 ) ∈ 𝑉 ) → ( ( ( 𝐴 · 𝑋 ) ( -g ‘ 𝑊 ) ( 𝐴 · 𝑌 ) ) = ( 0g ‘ 𝑊 ) ↔ ( 𝐴 · 𝑋 ) = ( 𝐴 · 𝑌 ) ) ) |
31 |
16 27 29 30
|
syl3anc |
⊢ ( 𝜑 → ( ( ( 𝐴 · 𝑋 ) ( -g ‘ 𝑊 ) ( 𝐴 · 𝑌 ) ) = ( 0g ‘ 𝑊 ) ↔ ( 𝐴 · 𝑋 ) = ( 𝐴 · 𝑌 ) ) ) |
32 |
22 25 31
|
3bitr3d |
⊢ ( 𝜑 → ( ( 𝐴 = 0 ∨ ( 𝑋 ( -g ‘ 𝑊 ) 𝑌 ) = ( 0g ‘ 𝑊 ) ) ↔ ( 𝐴 · 𝑋 ) = ( 𝐴 · 𝑌 ) ) ) |
33 |
14 20 32
|
3bitr3rd |
⊢ ( 𝜑 → ( ( 𝐴 · 𝑋 ) = ( 𝐴 · 𝑌 ) ↔ 𝑋 = 𝑌 ) ) |