| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lvecmulcan2.v | ⊢ 𝑉  =  ( Base ‘ 𝑊 ) | 
						
							| 2 |  | lvecmulcan2.s | ⊢  ·   =  (  ·𝑠  ‘ 𝑊 ) | 
						
							| 3 |  | lvecmulcan2.f | ⊢ 𝐹  =  ( Scalar ‘ 𝑊 ) | 
						
							| 4 |  | lvecmulcan2.k | ⊢ 𝐾  =  ( Base ‘ 𝐹 ) | 
						
							| 5 |  | lvecmulcan2.o | ⊢  0   =  ( 0g ‘ 𝑊 ) | 
						
							| 6 |  | lvecmulcan2.w | ⊢ ( 𝜑  →  𝑊  ∈  LVec ) | 
						
							| 7 |  | lvecmulcan2.a | ⊢ ( 𝜑  →  𝐴  ∈  𝐾 ) | 
						
							| 8 |  | lvecmulcan2.b | ⊢ ( 𝜑  →  𝐵  ∈  𝐾 ) | 
						
							| 9 |  | lvecmulcan2.x | ⊢ ( 𝜑  →  𝑋  ∈  𝑉 ) | 
						
							| 10 |  | lvecmulcan2.n | ⊢ ( 𝜑  →  𝑋  ≠   0  ) | 
						
							| 11 | 10 | neneqd | ⊢ ( 𝜑  →  ¬  𝑋  =   0  ) | 
						
							| 12 |  | biorf | ⊢ ( ¬  𝑋  =   0   →  ( ( 𝐴 ( -g ‘ 𝐹 ) 𝐵 )  =  ( 0g ‘ 𝐹 )  ↔  ( 𝑋  =   0   ∨  ( 𝐴 ( -g ‘ 𝐹 ) 𝐵 )  =  ( 0g ‘ 𝐹 ) ) ) ) | 
						
							| 13 |  | orcom | ⊢ ( ( 𝑋  =   0   ∨  ( 𝐴 ( -g ‘ 𝐹 ) 𝐵 )  =  ( 0g ‘ 𝐹 ) )  ↔  ( ( 𝐴 ( -g ‘ 𝐹 ) 𝐵 )  =  ( 0g ‘ 𝐹 )  ∨  𝑋  =   0  ) ) | 
						
							| 14 | 12 13 | bitrdi | ⊢ ( ¬  𝑋  =   0   →  ( ( 𝐴 ( -g ‘ 𝐹 ) 𝐵 )  =  ( 0g ‘ 𝐹 )  ↔  ( ( 𝐴 ( -g ‘ 𝐹 ) 𝐵 )  =  ( 0g ‘ 𝐹 )  ∨  𝑋  =   0  ) ) ) | 
						
							| 15 | 11 14 | syl | ⊢ ( 𝜑  →  ( ( 𝐴 ( -g ‘ 𝐹 ) 𝐵 )  =  ( 0g ‘ 𝐹 )  ↔  ( ( 𝐴 ( -g ‘ 𝐹 ) 𝐵 )  =  ( 0g ‘ 𝐹 )  ∨  𝑋  =   0  ) ) ) | 
						
							| 16 |  | eqid | ⊢ ( 0g ‘ 𝐹 )  =  ( 0g ‘ 𝐹 ) | 
						
							| 17 |  | lveclmod | ⊢ ( 𝑊  ∈  LVec  →  𝑊  ∈  LMod ) | 
						
							| 18 | 6 17 | syl | ⊢ ( 𝜑  →  𝑊  ∈  LMod ) | 
						
							| 19 | 3 | lmodfgrp | ⊢ ( 𝑊  ∈  LMod  →  𝐹  ∈  Grp ) | 
						
							| 20 | 18 19 | syl | ⊢ ( 𝜑  →  𝐹  ∈  Grp ) | 
						
							| 21 |  | eqid | ⊢ ( -g ‘ 𝐹 )  =  ( -g ‘ 𝐹 ) | 
						
							| 22 | 4 21 | grpsubcl | ⊢ ( ( 𝐹  ∈  Grp  ∧  𝐴  ∈  𝐾  ∧  𝐵  ∈  𝐾 )  →  ( 𝐴 ( -g ‘ 𝐹 ) 𝐵 )  ∈  𝐾 ) | 
						
							| 23 | 20 7 8 22 | syl3anc | ⊢ ( 𝜑  →  ( 𝐴 ( -g ‘ 𝐹 ) 𝐵 )  ∈  𝐾 ) | 
						
							| 24 | 1 2 3 4 16 5 6 23 9 | lvecvs0or | ⊢ ( 𝜑  →  ( ( ( 𝐴 ( -g ‘ 𝐹 ) 𝐵 )  ·  𝑋 )  =   0   ↔  ( ( 𝐴 ( -g ‘ 𝐹 ) 𝐵 )  =  ( 0g ‘ 𝐹 )  ∨  𝑋  =   0  ) ) ) | 
						
							| 25 |  | eqid | ⊢ ( -g ‘ 𝑊 )  =  ( -g ‘ 𝑊 ) | 
						
							| 26 | 1 2 3 4 25 21 18 7 8 9 | lmodsubdir | ⊢ ( 𝜑  →  ( ( 𝐴 ( -g ‘ 𝐹 ) 𝐵 )  ·  𝑋 )  =  ( ( 𝐴  ·  𝑋 ) ( -g ‘ 𝑊 ) ( 𝐵  ·  𝑋 ) ) ) | 
						
							| 27 | 26 | eqeq1d | ⊢ ( 𝜑  →  ( ( ( 𝐴 ( -g ‘ 𝐹 ) 𝐵 )  ·  𝑋 )  =   0   ↔  ( ( 𝐴  ·  𝑋 ) ( -g ‘ 𝑊 ) ( 𝐵  ·  𝑋 ) )  =   0  ) ) | 
						
							| 28 | 15 24 27 | 3bitr2rd | ⊢ ( 𝜑  →  ( ( ( 𝐴  ·  𝑋 ) ( -g ‘ 𝑊 ) ( 𝐵  ·  𝑋 ) )  =   0   ↔  ( 𝐴 ( -g ‘ 𝐹 ) 𝐵 )  =  ( 0g ‘ 𝐹 ) ) ) | 
						
							| 29 | 1 3 2 4 | lmodvscl | ⊢ ( ( 𝑊  ∈  LMod  ∧  𝐴  ∈  𝐾  ∧  𝑋  ∈  𝑉 )  →  ( 𝐴  ·  𝑋 )  ∈  𝑉 ) | 
						
							| 30 | 18 7 9 29 | syl3anc | ⊢ ( 𝜑  →  ( 𝐴  ·  𝑋 )  ∈  𝑉 ) | 
						
							| 31 | 1 3 2 4 | lmodvscl | ⊢ ( ( 𝑊  ∈  LMod  ∧  𝐵  ∈  𝐾  ∧  𝑋  ∈  𝑉 )  →  ( 𝐵  ·  𝑋 )  ∈  𝑉 ) | 
						
							| 32 | 18 8 9 31 | syl3anc | ⊢ ( 𝜑  →  ( 𝐵  ·  𝑋 )  ∈  𝑉 ) | 
						
							| 33 | 1 5 25 | lmodsubeq0 | ⊢ ( ( 𝑊  ∈  LMod  ∧  ( 𝐴  ·  𝑋 )  ∈  𝑉  ∧  ( 𝐵  ·  𝑋 )  ∈  𝑉 )  →  ( ( ( 𝐴  ·  𝑋 ) ( -g ‘ 𝑊 ) ( 𝐵  ·  𝑋 ) )  =   0   ↔  ( 𝐴  ·  𝑋 )  =  ( 𝐵  ·  𝑋 ) ) ) | 
						
							| 34 | 18 30 32 33 | syl3anc | ⊢ ( 𝜑  →  ( ( ( 𝐴  ·  𝑋 ) ( -g ‘ 𝑊 ) ( 𝐵  ·  𝑋 ) )  =   0   ↔  ( 𝐴  ·  𝑋 )  =  ( 𝐵  ·  𝑋 ) ) ) | 
						
							| 35 | 4 16 21 | grpsubeq0 | ⊢ ( ( 𝐹  ∈  Grp  ∧  𝐴  ∈  𝐾  ∧  𝐵  ∈  𝐾 )  →  ( ( 𝐴 ( -g ‘ 𝐹 ) 𝐵 )  =  ( 0g ‘ 𝐹 )  ↔  𝐴  =  𝐵 ) ) | 
						
							| 36 | 20 7 8 35 | syl3anc | ⊢ ( 𝜑  →  ( ( 𝐴 ( -g ‘ 𝐹 ) 𝐵 )  =  ( 0g ‘ 𝐹 )  ↔  𝐴  =  𝐵 ) ) | 
						
							| 37 | 28 34 36 | 3bitr3d | ⊢ ( 𝜑  →  ( ( 𝐴  ·  𝑋 )  =  ( 𝐵  ·  𝑋 )  ↔  𝐴  =  𝐵 ) ) |