| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lvecmul0or.v | ⊢ 𝑉  =  ( Base ‘ 𝑊 ) | 
						
							| 2 |  | lvecmul0or.s | ⊢  ·   =  (  ·𝑠  ‘ 𝑊 ) | 
						
							| 3 |  | lvecmul0or.f | ⊢ 𝐹  =  ( Scalar ‘ 𝑊 ) | 
						
							| 4 |  | lvecmul0or.k | ⊢ 𝐾  =  ( Base ‘ 𝐹 ) | 
						
							| 5 |  | lvecmul0or.o | ⊢ 𝑂  =  ( 0g ‘ 𝐹 ) | 
						
							| 6 |  | lvecmul0or.z | ⊢  0   =  ( 0g ‘ 𝑊 ) | 
						
							| 7 |  | lvecmul0or.w | ⊢ ( 𝜑  →  𝑊  ∈  LVec ) | 
						
							| 8 |  | lvecmul0or.a | ⊢ ( 𝜑  →  𝐴  ∈  𝐾 ) | 
						
							| 9 |  | lvecmul0or.x | ⊢ ( 𝜑  →  𝑋  ∈  𝑉 ) | 
						
							| 10 | 1 2 3 4 5 6 7 8 9 | lvecvs0or | ⊢ ( 𝜑  →  ( ( 𝐴  ·  𝑋 )  =   0   ↔  ( 𝐴  =  𝑂  ∨  𝑋  =   0  ) ) ) | 
						
							| 11 | 10 | necon3abid | ⊢ ( 𝜑  →  ( ( 𝐴  ·  𝑋 )  ≠   0   ↔  ¬  ( 𝐴  =  𝑂  ∨  𝑋  =   0  ) ) ) | 
						
							| 12 |  | neanior | ⊢ ( ( 𝐴  ≠  𝑂  ∧  𝑋  ≠   0  )  ↔  ¬  ( 𝐴  =  𝑂  ∨  𝑋  =   0  ) ) | 
						
							| 13 | 11 12 | bitr4di | ⊢ ( 𝜑  →  ( ( 𝐴  ·  𝑋 )  ≠   0   ↔  ( 𝐴  ≠  𝑂  ∧  𝑋  ≠   0  ) ) ) |