Metamath Proof Explorer


Theorem lvolbase

Description: A 3-dim lattice volume is a lattice element. (Contributed by NM, 1-Jul-2012)

Ref Expression
Hypotheses lvolbase.b 𝐵 = ( Base ‘ 𝐾 )
lvolbase.v 𝑉 = ( LVols ‘ 𝐾 )
Assertion lvolbase ( 𝑋𝑉𝑋𝐵 )

Proof

Step Hyp Ref Expression
1 lvolbase.b 𝐵 = ( Base ‘ 𝐾 )
2 lvolbase.v 𝑉 = ( LVols ‘ 𝐾 )
3 n0i ( 𝑋𝑉 → ¬ 𝑉 = ∅ )
4 2 eqeq1i ( 𝑉 = ∅ ↔ ( LVols ‘ 𝐾 ) = ∅ )
5 3 4 sylnib ( 𝑋𝑉 → ¬ ( LVols ‘ 𝐾 ) = ∅ )
6 fvprc ( ¬ 𝐾 ∈ V → ( LVols ‘ 𝐾 ) = ∅ )
7 5 6 nsyl2 ( 𝑋𝑉𝐾 ∈ V )
8 eqid ( ⋖ ‘ 𝐾 ) = ( ⋖ ‘ 𝐾 )
9 eqid ( LPlanes ‘ 𝐾 ) = ( LPlanes ‘ 𝐾 )
10 1 8 9 2 islvol ( 𝐾 ∈ V → ( 𝑋𝑉 ↔ ( 𝑋𝐵 ∧ ∃ 𝑥 ∈ ( LPlanes ‘ 𝐾 ) 𝑥 ( ⋖ ‘ 𝐾 ) 𝑋 ) ) )
11 10 simprbda ( ( 𝐾 ∈ V ∧ 𝑋𝑉 ) → 𝑋𝐵 )
12 7 11 mpancom ( 𝑋𝑉𝑋𝐵 )