| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lvolcmp.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
| 2 |
|
lvolcmp.v |
⊢ 𝑉 = ( LVols ‘ 𝐾 ) |
| 3 |
|
simp2 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → 𝑋 ∈ 𝑉 ) |
| 4 |
|
simp1 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → 𝐾 ∈ HL ) |
| 5 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
| 6 |
5 2
|
lvolbase |
⊢ ( 𝑋 ∈ 𝑉 → 𝑋 ∈ ( Base ‘ 𝐾 ) ) |
| 7 |
6
|
3ad2ant2 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → 𝑋 ∈ ( Base ‘ 𝐾 ) ) |
| 8 |
|
eqid |
⊢ ( ⋖ ‘ 𝐾 ) = ( ⋖ ‘ 𝐾 ) |
| 9 |
|
eqid |
⊢ ( LPlanes ‘ 𝐾 ) = ( LPlanes ‘ 𝐾 ) |
| 10 |
5 8 9 2
|
islvol4 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ ( Base ‘ 𝐾 ) ) → ( 𝑋 ∈ 𝑉 ↔ ∃ 𝑧 ∈ ( LPlanes ‘ 𝐾 ) 𝑧 ( ⋖ ‘ 𝐾 ) 𝑋 ) ) |
| 11 |
4 7 10
|
syl2anc |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( 𝑋 ∈ 𝑉 ↔ ∃ 𝑧 ∈ ( LPlanes ‘ 𝐾 ) 𝑧 ( ⋖ ‘ 𝐾 ) 𝑋 ) ) |
| 12 |
3 11
|
mpbid |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ∃ 𝑧 ∈ ( LPlanes ‘ 𝐾 ) 𝑧 ( ⋖ ‘ 𝐾 ) 𝑋 ) |
| 13 |
|
simpr3 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ∧ ( 𝑧 ∈ ( LPlanes ‘ 𝐾 ) ∧ 𝑧 ( ⋖ ‘ 𝐾 ) 𝑋 ∧ 𝑋 ≤ 𝑌 ) ) → 𝑋 ≤ 𝑌 ) |
| 14 |
|
hlpos |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ Poset ) |
| 15 |
14
|
3ad2ant1 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → 𝐾 ∈ Poset ) |
| 16 |
15
|
adantr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ∧ ( 𝑧 ∈ ( LPlanes ‘ 𝐾 ) ∧ 𝑧 ( ⋖ ‘ 𝐾 ) 𝑋 ∧ 𝑋 ≤ 𝑌 ) ) → 𝐾 ∈ Poset ) |
| 17 |
7
|
adantr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ∧ ( 𝑧 ∈ ( LPlanes ‘ 𝐾 ) ∧ 𝑧 ( ⋖ ‘ 𝐾 ) 𝑋 ∧ 𝑋 ≤ 𝑌 ) ) → 𝑋 ∈ ( Base ‘ 𝐾 ) ) |
| 18 |
|
simpl3 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ∧ ( 𝑧 ∈ ( LPlanes ‘ 𝐾 ) ∧ 𝑧 ( ⋖ ‘ 𝐾 ) 𝑋 ∧ 𝑋 ≤ 𝑌 ) ) → 𝑌 ∈ 𝑉 ) |
| 19 |
5 2
|
lvolbase |
⊢ ( 𝑌 ∈ 𝑉 → 𝑌 ∈ ( Base ‘ 𝐾 ) ) |
| 20 |
18 19
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ∧ ( 𝑧 ∈ ( LPlanes ‘ 𝐾 ) ∧ 𝑧 ( ⋖ ‘ 𝐾 ) 𝑋 ∧ 𝑋 ≤ 𝑌 ) ) → 𝑌 ∈ ( Base ‘ 𝐾 ) ) |
| 21 |
|
simpr1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ∧ ( 𝑧 ∈ ( LPlanes ‘ 𝐾 ) ∧ 𝑧 ( ⋖ ‘ 𝐾 ) 𝑋 ∧ 𝑋 ≤ 𝑌 ) ) → 𝑧 ∈ ( LPlanes ‘ 𝐾 ) ) |
| 22 |
5 9
|
lplnbase |
⊢ ( 𝑧 ∈ ( LPlanes ‘ 𝐾 ) → 𝑧 ∈ ( Base ‘ 𝐾 ) ) |
| 23 |
21 22
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ∧ ( 𝑧 ∈ ( LPlanes ‘ 𝐾 ) ∧ 𝑧 ( ⋖ ‘ 𝐾 ) 𝑋 ∧ 𝑋 ≤ 𝑌 ) ) → 𝑧 ∈ ( Base ‘ 𝐾 ) ) |
| 24 |
|
simpr2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ∧ ( 𝑧 ∈ ( LPlanes ‘ 𝐾 ) ∧ 𝑧 ( ⋖ ‘ 𝐾 ) 𝑋 ∧ 𝑋 ≤ 𝑌 ) ) → 𝑧 ( ⋖ ‘ 𝐾 ) 𝑋 ) |
| 25 |
|
simpl1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ∧ ( 𝑧 ∈ ( LPlanes ‘ 𝐾 ) ∧ 𝑧 ( ⋖ ‘ 𝐾 ) 𝑋 ∧ 𝑋 ≤ 𝑌 ) ) → 𝐾 ∈ HL ) |
| 26 |
5 1 8
|
cvrle |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑧 ∈ ( Base ‘ 𝐾 ) ∧ 𝑋 ∈ ( Base ‘ 𝐾 ) ) ∧ 𝑧 ( ⋖ ‘ 𝐾 ) 𝑋 ) → 𝑧 ≤ 𝑋 ) |
| 27 |
25 23 17 24 26
|
syl31anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ∧ ( 𝑧 ∈ ( LPlanes ‘ 𝐾 ) ∧ 𝑧 ( ⋖ ‘ 𝐾 ) 𝑋 ∧ 𝑋 ≤ 𝑌 ) ) → 𝑧 ≤ 𝑋 ) |
| 28 |
5 1
|
postr |
⊢ ( ( 𝐾 ∈ Poset ∧ ( 𝑧 ∈ ( Base ‘ 𝐾 ) ∧ 𝑋 ∈ ( Base ‘ 𝐾 ) ∧ 𝑌 ∈ ( Base ‘ 𝐾 ) ) ) → ( ( 𝑧 ≤ 𝑋 ∧ 𝑋 ≤ 𝑌 ) → 𝑧 ≤ 𝑌 ) ) |
| 29 |
16 23 17 20 28
|
syl13anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ∧ ( 𝑧 ∈ ( LPlanes ‘ 𝐾 ) ∧ 𝑧 ( ⋖ ‘ 𝐾 ) 𝑋 ∧ 𝑋 ≤ 𝑌 ) ) → ( ( 𝑧 ≤ 𝑋 ∧ 𝑋 ≤ 𝑌 ) → 𝑧 ≤ 𝑌 ) ) |
| 30 |
27 13 29
|
mp2and |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ∧ ( 𝑧 ∈ ( LPlanes ‘ 𝐾 ) ∧ 𝑧 ( ⋖ ‘ 𝐾 ) 𝑋 ∧ 𝑋 ≤ 𝑌 ) ) → 𝑧 ≤ 𝑌 ) |
| 31 |
1 8 9 2
|
lplncvrlvol2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑧 ∈ ( LPlanes ‘ 𝐾 ) ∧ 𝑌 ∈ 𝑉 ) ∧ 𝑧 ≤ 𝑌 ) → 𝑧 ( ⋖ ‘ 𝐾 ) 𝑌 ) |
| 32 |
25 21 18 30 31
|
syl31anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ∧ ( 𝑧 ∈ ( LPlanes ‘ 𝐾 ) ∧ 𝑧 ( ⋖ ‘ 𝐾 ) 𝑋 ∧ 𝑋 ≤ 𝑌 ) ) → 𝑧 ( ⋖ ‘ 𝐾 ) 𝑌 ) |
| 33 |
5 1 8
|
cvrcmp |
⊢ ( ( 𝐾 ∈ Poset ∧ ( 𝑋 ∈ ( Base ‘ 𝐾 ) ∧ 𝑌 ∈ ( Base ‘ 𝐾 ) ∧ 𝑧 ∈ ( Base ‘ 𝐾 ) ) ∧ ( 𝑧 ( ⋖ ‘ 𝐾 ) 𝑋 ∧ 𝑧 ( ⋖ ‘ 𝐾 ) 𝑌 ) ) → ( 𝑋 ≤ 𝑌 ↔ 𝑋 = 𝑌 ) ) |
| 34 |
16 17 20 23 24 32 33
|
syl132anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ∧ ( 𝑧 ∈ ( LPlanes ‘ 𝐾 ) ∧ 𝑧 ( ⋖ ‘ 𝐾 ) 𝑋 ∧ 𝑋 ≤ 𝑌 ) ) → ( 𝑋 ≤ 𝑌 ↔ 𝑋 = 𝑌 ) ) |
| 35 |
13 34
|
mpbid |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ∧ ( 𝑧 ∈ ( LPlanes ‘ 𝐾 ) ∧ 𝑧 ( ⋖ ‘ 𝐾 ) 𝑋 ∧ 𝑋 ≤ 𝑌 ) ) → 𝑋 = 𝑌 ) |
| 36 |
35
|
3exp2 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( 𝑧 ∈ ( LPlanes ‘ 𝐾 ) → ( 𝑧 ( ⋖ ‘ 𝐾 ) 𝑋 → ( 𝑋 ≤ 𝑌 → 𝑋 = 𝑌 ) ) ) ) |
| 37 |
36
|
rexlimdv |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( ∃ 𝑧 ∈ ( LPlanes ‘ 𝐾 ) 𝑧 ( ⋖ ‘ 𝐾 ) 𝑋 → ( 𝑋 ≤ 𝑌 → 𝑋 = 𝑌 ) ) ) |
| 38 |
12 37
|
mpd |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( 𝑋 ≤ 𝑌 → 𝑋 = 𝑌 ) ) |
| 39 |
5 1
|
posref |
⊢ ( ( 𝐾 ∈ Poset ∧ 𝑋 ∈ ( Base ‘ 𝐾 ) ) → 𝑋 ≤ 𝑋 ) |
| 40 |
15 7 39
|
syl2anc |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → 𝑋 ≤ 𝑋 ) |
| 41 |
|
breq2 |
⊢ ( 𝑋 = 𝑌 → ( 𝑋 ≤ 𝑋 ↔ 𝑋 ≤ 𝑌 ) ) |
| 42 |
40 41
|
syl5ibcom |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( 𝑋 = 𝑌 → 𝑋 ≤ 𝑌 ) ) |
| 43 |
38 42
|
impbid |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( 𝑋 ≤ 𝑌 ↔ 𝑋 = 𝑌 ) ) |