Step |
Hyp |
Ref |
Expression |
1 |
|
lvolex3.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
2 |
|
lvolex3.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
3 |
|
lvolex3.p |
⊢ 𝑃 = ( LPlanes ‘ 𝐾 ) |
4 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
5 |
|
eqid |
⊢ ( join ‘ 𝐾 ) = ( join ‘ 𝐾 ) |
6 |
4 1 5 2 3
|
islpln2 |
⊢ ( 𝐾 ∈ HL → ( 𝑋 ∈ 𝑃 ↔ ( 𝑋 ∈ ( Base ‘ 𝐾 ) ∧ ∃ 𝑟 ∈ 𝐴 ∃ 𝑠 ∈ 𝐴 ∃ 𝑡 ∈ 𝐴 ( 𝑟 ≠ 𝑠 ∧ ¬ 𝑡 ≤ ( 𝑟 ( join ‘ 𝐾 ) 𝑠 ) ∧ 𝑋 = ( ( 𝑟 ( join ‘ 𝐾 ) 𝑠 ) ( join ‘ 𝐾 ) 𝑡 ) ) ) ) ) |
7 |
|
simp1l |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴 ) ) ∧ 𝑡 ∈ 𝐴 ∧ ( 𝑟 ≠ 𝑠 ∧ ¬ 𝑡 ≤ ( 𝑟 ( join ‘ 𝐾 ) 𝑠 ) ∧ 𝑋 = ( ( 𝑟 ( join ‘ 𝐾 ) 𝑠 ) ( join ‘ 𝐾 ) 𝑡 ) ) ) → 𝐾 ∈ HL ) |
8 |
|
simp1rl |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴 ) ) ∧ 𝑡 ∈ 𝐴 ∧ ( 𝑟 ≠ 𝑠 ∧ ¬ 𝑡 ≤ ( 𝑟 ( join ‘ 𝐾 ) 𝑠 ) ∧ 𝑋 = ( ( 𝑟 ( join ‘ 𝐾 ) 𝑠 ) ( join ‘ 𝐾 ) 𝑡 ) ) ) → 𝑟 ∈ 𝐴 ) |
9 |
|
simp1rr |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴 ) ) ∧ 𝑡 ∈ 𝐴 ∧ ( 𝑟 ≠ 𝑠 ∧ ¬ 𝑡 ≤ ( 𝑟 ( join ‘ 𝐾 ) 𝑠 ) ∧ 𝑋 = ( ( 𝑟 ( join ‘ 𝐾 ) 𝑠 ) ( join ‘ 𝐾 ) 𝑡 ) ) ) → 𝑠 ∈ 𝐴 ) |
10 |
|
simp2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴 ) ) ∧ 𝑡 ∈ 𝐴 ∧ ( 𝑟 ≠ 𝑠 ∧ ¬ 𝑡 ≤ ( 𝑟 ( join ‘ 𝐾 ) 𝑠 ) ∧ 𝑋 = ( ( 𝑟 ( join ‘ 𝐾 ) 𝑠 ) ( join ‘ 𝐾 ) 𝑡 ) ) ) → 𝑡 ∈ 𝐴 ) |
11 |
5 1 2
|
3dim3 |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴 ∧ 𝑡 ∈ 𝐴 ) ) → ∃ 𝑞 ∈ 𝐴 ¬ 𝑞 ≤ ( ( 𝑟 ( join ‘ 𝐾 ) 𝑠 ) ( join ‘ 𝐾 ) 𝑡 ) ) |
12 |
7 8 9 10 11
|
syl13anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴 ) ) ∧ 𝑡 ∈ 𝐴 ∧ ( 𝑟 ≠ 𝑠 ∧ ¬ 𝑡 ≤ ( 𝑟 ( join ‘ 𝐾 ) 𝑠 ) ∧ 𝑋 = ( ( 𝑟 ( join ‘ 𝐾 ) 𝑠 ) ( join ‘ 𝐾 ) 𝑡 ) ) ) → ∃ 𝑞 ∈ 𝐴 ¬ 𝑞 ≤ ( ( 𝑟 ( join ‘ 𝐾 ) 𝑠 ) ( join ‘ 𝐾 ) 𝑡 ) ) |
13 |
|
simp33 |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴 ) ) ∧ 𝑡 ∈ 𝐴 ∧ ( 𝑟 ≠ 𝑠 ∧ ¬ 𝑡 ≤ ( 𝑟 ( join ‘ 𝐾 ) 𝑠 ) ∧ 𝑋 = ( ( 𝑟 ( join ‘ 𝐾 ) 𝑠 ) ( join ‘ 𝐾 ) 𝑡 ) ) ) → 𝑋 = ( ( 𝑟 ( join ‘ 𝐾 ) 𝑠 ) ( join ‘ 𝐾 ) 𝑡 ) ) |
14 |
|
breq2 |
⊢ ( 𝑋 = ( ( 𝑟 ( join ‘ 𝐾 ) 𝑠 ) ( join ‘ 𝐾 ) 𝑡 ) → ( 𝑞 ≤ 𝑋 ↔ 𝑞 ≤ ( ( 𝑟 ( join ‘ 𝐾 ) 𝑠 ) ( join ‘ 𝐾 ) 𝑡 ) ) ) |
15 |
14
|
notbid |
⊢ ( 𝑋 = ( ( 𝑟 ( join ‘ 𝐾 ) 𝑠 ) ( join ‘ 𝐾 ) 𝑡 ) → ( ¬ 𝑞 ≤ 𝑋 ↔ ¬ 𝑞 ≤ ( ( 𝑟 ( join ‘ 𝐾 ) 𝑠 ) ( join ‘ 𝐾 ) 𝑡 ) ) ) |
16 |
15
|
rexbidv |
⊢ ( 𝑋 = ( ( 𝑟 ( join ‘ 𝐾 ) 𝑠 ) ( join ‘ 𝐾 ) 𝑡 ) → ( ∃ 𝑞 ∈ 𝐴 ¬ 𝑞 ≤ 𝑋 ↔ ∃ 𝑞 ∈ 𝐴 ¬ 𝑞 ≤ ( ( 𝑟 ( join ‘ 𝐾 ) 𝑠 ) ( join ‘ 𝐾 ) 𝑡 ) ) ) |
17 |
13 16
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴 ) ) ∧ 𝑡 ∈ 𝐴 ∧ ( 𝑟 ≠ 𝑠 ∧ ¬ 𝑡 ≤ ( 𝑟 ( join ‘ 𝐾 ) 𝑠 ) ∧ 𝑋 = ( ( 𝑟 ( join ‘ 𝐾 ) 𝑠 ) ( join ‘ 𝐾 ) 𝑡 ) ) ) → ( ∃ 𝑞 ∈ 𝐴 ¬ 𝑞 ≤ 𝑋 ↔ ∃ 𝑞 ∈ 𝐴 ¬ 𝑞 ≤ ( ( 𝑟 ( join ‘ 𝐾 ) 𝑠 ) ( join ‘ 𝐾 ) 𝑡 ) ) ) |
18 |
12 17
|
mpbird |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴 ) ) ∧ 𝑡 ∈ 𝐴 ∧ ( 𝑟 ≠ 𝑠 ∧ ¬ 𝑡 ≤ ( 𝑟 ( join ‘ 𝐾 ) 𝑠 ) ∧ 𝑋 = ( ( 𝑟 ( join ‘ 𝐾 ) 𝑠 ) ( join ‘ 𝐾 ) 𝑡 ) ) ) → ∃ 𝑞 ∈ 𝐴 ¬ 𝑞 ≤ 𝑋 ) |
19 |
18
|
rexlimdv3a |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴 ) ) → ( ∃ 𝑡 ∈ 𝐴 ( 𝑟 ≠ 𝑠 ∧ ¬ 𝑡 ≤ ( 𝑟 ( join ‘ 𝐾 ) 𝑠 ) ∧ 𝑋 = ( ( 𝑟 ( join ‘ 𝐾 ) 𝑠 ) ( join ‘ 𝐾 ) 𝑡 ) ) → ∃ 𝑞 ∈ 𝐴 ¬ 𝑞 ≤ 𝑋 ) ) |
20 |
19
|
rexlimdvva |
⊢ ( 𝐾 ∈ HL → ( ∃ 𝑟 ∈ 𝐴 ∃ 𝑠 ∈ 𝐴 ∃ 𝑡 ∈ 𝐴 ( 𝑟 ≠ 𝑠 ∧ ¬ 𝑡 ≤ ( 𝑟 ( join ‘ 𝐾 ) 𝑠 ) ∧ 𝑋 = ( ( 𝑟 ( join ‘ 𝐾 ) 𝑠 ) ( join ‘ 𝐾 ) 𝑡 ) ) → ∃ 𝑞 ∈ 𝐴 ¬ 𝑞 ≤ 𝑋 ) ) |
21 |
20
|
adantld |
⊢ ( 𝐾 ∈ HL → ( ( 𝑋 ∈ ( Base ‘ 𝐾 ) ∧ ∃ 𝑟 ∈ 𝐴 ∃ 𝑠 ∈ 𝐴 ∃ 𝑡 ∈ 𝐴 ( 𝑟 ≠ 𝑠 ∧ ¬ 𝑡 ≤ ( 𝑟 ( join ‘ 𝐾 ) 𝑠 ) ∧ 𝑋 = ( ( 𝑟 ( join ‘ 𝐾 ) 𝑠 ) ( join ‘ 𝐾 ) 𝑡 ) ) ) → ∃ 𝑞 ∈ 𝐴 ¬ 𝑞 ≤ 𝑋 ) ) |
22 |
6 21
|
sylbid |
⊢ ( 𝐾 ∈ HL → ( 𝑋 ∈ 𝑃 → ∃ 𝑞 ∈ 𝐴 ¬ 𝑞 ≤ 𝑋 ) ) |
23 |
22
|
imp |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ) → ∃ 𝑞 ∈ 𝐴 ¬ 𝑞 ≤ 𝑋 ) |