Metamath Proof Explorer


Theorem lvoli

Description: Condition implying a 3-dim lattice volume. (Contributed by NM, 1-Jul-2012)

Ref Expression
Hypotheses lvolset.b 𝐵 = ( Base ‘ 𝐾 )
lvolset.c 𝐶 = ( ⋖ ‘ 𝐾 )
lvolset.p 𝑃 = ( LPlanes ‘ 𝐾 )
lvolset.v 𝑉 = ( LVols ‘ 𝐾 )
Assertion lvoli ( ( ( 𝐾𝐷𝑌𝐵𝑋𝑃 ) ∧ 𝑋 𝐶 𝑌 ) → 𝑌𝑉 )

Proof

Step Hyp Ref Expression
1 lvolset.b 𝐵 = ( Base ‘ 𝐾 )
2 lvolset.c 𝐶 = ( ⋖ ‘ 𝐾 )
3 lvolset.p 𝑃 = ( LPlanes ‘ 𝐾 )
4 lvolset.v 𝑉 = ( LVols ‘ 𝐾 )
5 simpl2 ( ( ( 𝐾𝐷𝑌𝐵𝑋𝑃 ) ∧ 𝑋 𝐶 𝑌 ) → 𝑌𝐵 )
6 breq1 ( 𝑥 = 𝑋 → ( 𝑥 𝐶 𝑌𝑋 𝐶 𝑌 ) )
7 6 rspcev ( ( 𝑋𝑃𝑋 𝐶 𝑌 ) → ∃ 𝑥𝑃 𝑥 𝐶 𝑌 )
8 7 3ad2antl3 ( ( ( 𝐾𝐷𝑌𝐵𝑋𝑃 ) ∧ 𝑋 𝐶 𝑌 ) → ∃ 𝑥𝑃 𝑥 𝐶 𝑌 )
9 simpl1 ( ( ( 𝐾𝐷𝑌𝐵𝑋𝑃 ) ∧ 𝑋 𝐶 𝑌 ) → 𝐾𝐷 )
10 1 2 3 4 islvol ( 𝐾𝐷 → ( 𝑌𝑉 ↔ ( 𝑌𝐵 ∧ ∃ 𝑥𝑃 𝑥 𝐶 𝑌 ) ) )
11 9 10 syl ( ( ( 𝐾𝐷𝑌𝐵𝑋𝑃 ) ∧ 𝑋 𝐶 𝑌 ) → ( 𝑌𝑉 ↔ ( 𝑌𝐵 ∧ ∃ 𝑥𝑃 𝑥 𝐶 𝑌 ) ) )
12 5 8 11 mpbir2and ( ( ( 𝐾𝐷𝑌𝐵𝑋𝑃 ) ∧ 𝑋 𝐶 𝑌 ) → 𝑌𝑉 )