Step |
Hyp |
Ref |
Expression |
1 |
|
lvoli3.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
2 |
|
lvoli3.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
3 |
|
lvoli3.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
4 |
|
lvoli3.p |
⊢ 𝑃 = ( LPlanes ‘ 𝐾 ) |
5 |
|
lvoli3.v |
⊢ 𝑉 = ( LVols ‘ 𝐾 ) |
6 |
|
simpl2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴 ) ∧ ¬ 𝑄 ≤ 𝑋 ) → 𝑋 ∈ 𝑃 ) |
7 |
|
simpl3 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴 ) ∧ ¬ 𝑄 ≤ 𝑋 ) → 𝑄 ∈ 𝐴 ) |
8 |
|
simpr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴 ) ∧ ¬ 𝑄 ≤ 𝑋 ) → ¬ 𝑄 ≤ 𝑋 ) |
9 |
|
eqidd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴 ) ∧ ¬ 𝑄 ≤ 𝑋 ) → ( 𝑋 ∨ 𝑄 ) = ( 𝑋 ∨ 𝑄 ) ) |
10 |
|
breq2 |
⊢ ( 𝑦 = 𝑋 → ( 𝑟 ≤ 𝑦 ↔ 𝑟 ≤ 𝑋 ) ) |
11 |
10
|
notbid |
⊢ ( 𝑦 = 𝑋 → ( ¬ 𝑟 ≤ 𝑦 ↔ ¬ 𝑟 ≤ 𝑋 ) ) |
12 |
|
oveq1 |
⊢ ( 𝑦 = 𝑋 → ( 𝑦 ∨ 𝑟 ) = ( 𝑋 ∨ 𝑟 ) ) |
13 |
12
|
eqeq2d |
⊢ ( 𝑦 = 𝑋 → ( ( 𝑋 ∨ 𝑄 ) = ( 𝑦 ∨ 𝑟 ) ↔ ( 𝑋 ∨ 𝑄 ) = ( 𝑋 ∨ 𝑟 ) ) ) |
14 |
11 13
|
anbi12d |
⊢ ( 𝑦 = 𝑋 → ( ( ¬ 𝑟 ≤ 𝑦 ∧ ( 𝑋 ∨ 𝑄 ) = ( 𝑦 ∨ 𝑟 ) ) ↔ ( ¬ 𝑟 ≤ 𝑋 ∧ ( 𝑋 ∨ 𝑄 ) = ( 𝑋 ∨ 𝑟 ) ) ) ) |
15 |
|
breq1 |
⊢ ( 𝑟 = 𝑄 → ( 𝑟 ≤ 𝑋 ↔ 𝑄 ≤ 𝑋 ) ) |
16 |
15
|
notbid |
⊢ ( 𝑟 = 𝑄 → ( ¬ 𝑟 ≤ 𝑋 ↔ ¬ 𝑄 ≤ 𝑋 ) ) |
17 |
|
oveq2 |
⊢ ( 𝑟 = 𝑄 → ( 𝑋 ∨ 𝑟 ) = ( 𝑋 ∨ 𝑄 ) ) |
18 |
17
|
eqeq2d |
⊢ ( 𝑟 = 𝑄 → ( ( 𝑋 ∨ 𝑄 ) = ( 𝑋 ∨ 𝑟 ) ↔ ( 𝑋 ∨ 𝑄 ) = ( 𝑋 ∨ 𝑄 ) ) ) |
19 |
16 18
|
anbi12d |
⊢ ( 𝑟 = 𝑄 → ( ( ¬ 𝑟 ≤ 𝑋 ∧ ( 𝑋 ∨ 𝑄 ) = ( 𝑋 ∨ 𝑟 ) ) ↔ ( ¬ 𝑄 ≤ 𝑋 ∧ ( 𝑋 ∨ 𝑄 ) = ( 𝑋 ∨ 𝑄 ) ) ) ) |
20 |
14 19
|
rspc2ev |
⊢ ( ( 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴 ∧ ( ¬ 𝑄 ≤ 𝑋 ∧ ( 𝑋 ∨ 𝑄 ) = ( 𝑋 ∨ 𝑄 ) ) ) → ∃ 𝑦 ∈ 𝑃 ∃ 𝑟 ∈ 𝐴 ( ¬ 𝑟 ≤ 𝑦 ∧ ( 𝑋 ∨ 𝑄 ) = ( 𝑦 ∨ 𝑟 ) ) ) |
21 |
6 7 8 9 20
|
syl112anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴 ) ∧ ¬ 𝑄 ≤ 𝑋 ) → ∃ 𝑦 ∈ 𝑃 ∃ 𝑟 ∈ 𝐴 ( ¬ 𝑟 ≤ 𝑦 ∧ ( 𝑋 ∨ 𝑄 ) = ( 𝑦 ∨ 𝑟 ) ) ) |
22 |
|
simpl1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴 ) ∧ ¬ 𝑄 ≤ 𝑋 ) → 𝐾 ∈ HL ) |
23 |
22
|
hllatd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴 ) ∧ ¬ 𝑄 ≤ 𝑋 ) → 𝐾 ∈ Lat ) |
24 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
25 |
24 4
|
lplnbase |
⊢ ( 𝑋 ∈ 𝑃 → 𝑋 ∈ ( Base ‘ 𝐾 ) ) |
26 |
6 25
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴 ) ∧ ¬ 𝑄 ≤ 𝑋 ) → 𝑋 ∈ ( Base ‘ 𝐾 ) ) |
27 |
24 3
|
atbase |
⊢ ( 𝑄 ∈ 𝐴 → 𝑄 ∈ ( Base ‘ 𝐾 ) ) |
28 |
7 27
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴 ) ∧ ¬ 𝑄 ≤ 𝑋 ) → 𝑄 ∈ ( Base ‘ 𝐾 ) ) |
29 |
24 2
|
latjcl |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ ( Base ‘ 𝐾 ) ∧ 𝑄 ∈ ( Base ‘ 𝐾 ) ) → ( 𝑋 ∨ 𝑄 ) ∈ ( Base ‘ 𝐾 ) ) |
30 |
23 26 28 29
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴 ) ∧ ¬ 𝑄 ≤ 𝑋 ) → ( 𝑋 ∨ 𝑄 ) ∈ ( Base ‘ 𝐾 ) ) |
31 |
24 1 2 3 4 5
|
islvol3 |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∨ 𝑄 ) ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝑋 ∨ 𝑄 ) ∈ 𝑉 ↔ ∃ 𝑦 ∈ 𝑃 ∃ 𝑟 ∈ 𝐴 ( ¬ 𝑟 ≤ 𝑦 ∧ ( 𝑋 ∨ 𝑄 ) = ( 𝑦 ∨ 𝑟 ) ) ) ) |
32 |
22 30 31
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴 ) ∧ ¬ 𝑄 ≤ 𝑋 ) → ( ( 𝑋 ∨ 𝑄 ) ∈ 𝑉 ↔ ∃ 𝑦 ∈ 𝑃 ∃ 𝑟 ∈ 𝐴 ( ¬ 𝑟 ≤ 𝑦 ∧ ( 𝑋 ∨ 𝑄 ) = ( 𝑦 ∨ 𝑟 ) ) ) ) |
33 |
21 32
|
mpbird |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴 ) ∧ ¬ 𝑄 ≤ 𝑋 ) → ( 𝑋 ∨ 𝑄 ) ∈ 𝑉 ) |