Step |
Hyp |
Ref |
Expression |
1 |
|
lvolnleat.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
2 |
|
lvolnleat.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
3 |
|
lvolnleat.v |
⊢ 𝑉 = ( LVols ‘ 𝐾 ) |
4 |
|
3simpa |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) → ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉 ) ) |
5 |
|
simp3 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) → 𝑃 ∈ 𝐴 ) |
6 |
|
eqid |
⊢ ( join ‘ 𝐾 ) = ( join ‘ 𝐾 ) |
7 |
1 6 2 3
|
lvolnle3at |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴 ) ) → ¬ 𝑋 ≤ ( ( 𝑃 ( join ‘ 𝐾 ) 𝑃 ) ( join ‘ 𝐾 ) 𝑃 ) ) |
8 |
4 5 5 5 7
|
syl13anc |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) → ¬ 𝑋 ≤ ( ( 𝑃 ( join ‘ 𝐾 ) 𝑃 ) ( join ‘ 𝐾 ) 𝑃 ) ) |
9 |
6 2
|
hlatjidm |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ) → ( 𝑃 ( join ‘ 𝐾 ) 𝑃 ) = 𝑃 ) |
10 |
9
|
3adant2 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) → ( 𝑃 ( join ‘ 𝐾 ) 𝑃 ) = 𝑃 ) |
11 |
10
|
oveq1d |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) → ( ( 𝑃 ( join ‘ 𝐾 ) 𝑃 ) ( join ‘ 𝐾 ) 𝑃 ) = ( 𝑃 ( join ‘ 𝐾 ) 𝑃 ) ) |
12 |
11 10
|
eqtrd |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) → ( ( 𝑃 ( join ‘ 𝐾 ) 𝑃 ) ( join ‘ 𝐾 ) 𝑃 ) = 𝑃 ) |
13 |
12
|
breq2d |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) → ( 𝑋 ≤ ( ( 𝑃 ( join ‘ 𝐾 ) 𝑃 ) ( join ‘ 𝐾 ) 𝑃 ) ↔ 𝑋 ≤ 𝑃 ) ) |
14 |
8 13
|
mtbid |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) → ¬ 𝑋 ≤ 𝑃 ) |