Metamath Proof Explorer


Theorem lvolnleat

Description: An atom cannot majorize a lattice volume. (Contributed by NM, 14-Jul-2012)

Ref Expression
Hypotheses lvolnleat.l = ( le ‘ 𝐾 )
lvolnleat.a 𝐴 = ( Atoms ‘ 𝐾 )
lvolnleat.v 𝑉 = ( LVols ‘ 𝐾 )
Assertion lvolnleat ( ( 𝐾 ∈ HL ∧ 𝑋𝑉𝑃𝐴 ) → ¬ 𝑋 𝑃 )

Proof

Step Hyp Ref Expression
1 lvolnleat.l = ( le ‘ 𝐾 )
2 lvolnleat.a 𝐴 = ( Atoms ‘ 𝐾 )
3 lvolnleat.v 𝑉 = ( LVols ‘ 𝐾 )
4 3simpa ( ( 𝐾 ∈ HL ∧ 𝑋𝑉𝑃𝐴 ) → ( 𝐾 ∈ HL ∧ 𝑋𝑉 ) )
5 simp3 ( ( 𝐾 ∈ HL ∧ 𝑋𝑉𝑃𝐴 ) → 𝑃𝐴 )
6 eqid ( join ‘ 𝐾 ) = ( join ‘ 𝐾 )
7 1 6 2 3 lvolnle3at ( ( ( 𝐾 ∈ HL ∧ 𝑋𝑉 ) ∧ ( 𝑃𝐴𝑃𝐴𝑃𝐴 ) ) → ¬ 𝑋 ( ( 𝑃 ( join ‘ 𝐾 ) 𝑃 ) ( join ‘ 𝐾 ) 𝑃 ) )
8 4 5 5 5 7 syl13anc ( ( 𝐾 ∈ HL ∧ 𝑋𝑉𝑃𝐴 ) → ¬ 𝑋 ( ( 𝑃 ( join ‘ 𝐾 ) 𝑃 ) ( join ‘ 𝐾 ) 𝑃 ) )
9 6 2 hlatjidm ( ( 𝐾 ∈ HL ∧ 𝑃𝐴 ) → ( 𝑃 ( join ‘ 𝐾 ) 𝑃 ) = 𝑃 )
10 9 3adant2 ( ( 𝐾 ∈ HL ∧ 𝑋𝑉𝑃𝐴 ) → ( 𝑃 ( join ‘ 𝐾 ) 𝑃 ) = 𝑃 )
11 10 oveq1d ( ( 𝐾 ∈ HL ∧ 𝑋𝑉𝑃𝐴 ) → ( ( 𝑃 ( join ‘ 𝐾 ) 𝑃 ) ( join ‘ 𝐾 ) 𝑃 ) = ( 𝑃 ( join ‘ 𝐾 ) 𝑃 ) )
12 11 10 eqtrd ( ( 𝐾 ∈ HL ∧ 𝑋𝑉𝑃𝐴 ) → ( ( 𝑃 ( join ‘ 𝐾 ) 𝑃 ) ( join ‘ 𝐾 ) 𝑃 ) = 𝑃 )
13 12 breq2d ( ( 𝐾 ∈ HL ∧ 𝑋𝑉𝑃𝐴 ) → ( 𝑋 ( ( 𝑃 ( join ‘ 𝐾 ) 𝑃 ) ( join ‘ 𝐾 ) 𝑃 ) ↔ 𝑋 𝑃 ) )
14 8 13 mtbid ( ( 𝐾 ∈ HL ∧ 𝑋𝑉𝑃𝐴 ) → ¬ 𝑋 𝑃 )