Metamath Proof Explorer


Theorem m1bits

Description: The bits of negative one. (Contributed by Mario Carneiro, 5-Sep-2016)

Ref Expression
Assertion m1bits ( bits ‘ - 1 ) = ℕ0

Proof

Step Hyp Ref Expression
1 0z 0 ∈ ℤ
2 bitscmp ( 0 ∈ ℤ → ( ℕ0 ∖ ( bits ‘ 0 ) ) = ( bits ‘ ( - 0 − 1 ) ) )
3 1 2 ax-mp ( ℕ0 ∖ ( bits ‘ 0 ) ) = ( bits ‘ ( - 0 − 1 ) )
4 0bits ( bits ‘ 0 ) = ∅
5 4 difeq2i ( ℕ0 ∖ ( bits ‘ 0 ) ) = ( ℕ0 ∖ ∅ )
6 dif0 ( ℕ0 ∖ ∅ ) = ℕ0
7 5 6 eqtri ( ℕ0 ∖ ( bits ‘ 0 ) ) = ℕ0
8 neg0 - 0 = 0
9 8 oveq1i ( - 0 − 1 ) = ( 0 − 1 )
10 df-neg - 1 = ( 0 − 1 )
11 9 10 eqtr4i ( - 0 − 1 ) = - 1
12 11 fveq2i ( bits ‘ ( - 0 − 1 ) ) = ( bits ‘ - 1 )
13 3 7 12 3eqtr3ri ( bits ‘ - 1 ) = ℕ0