Step |
Hyp |
Ref |
Expression |
1 |
|
0z |
⊢ 0 ∈ ℤ |
2 |
|
bitscmp |
⊢ ( 0 ∈ ℤ → ( ℕ0 ∖ ( bits ‘ 0 ) ) = ( bits ‘ ( - 0 − 1 ) ) ) |
3 |
1 2
|
ax-mp |
⊢ ( ℕ0 ∖ ( bits ‘ 0 ) ) = ( bits ‘ ( - 0 − 1 ) ) |
4 |
|
0bits |
⊢ ( bits ‘ 0 ) = ∅ |
5 |
4
|
difeq2i |
⊢ ( ℕ0 ∖ ( bits ‘ 0 ) ) = ( ℕ0 ∖ ∅ ) |
6 |
|
dif0 |
⊢ ( ℕ0 ∖ ∅ ) = ℕ0 |
7 |
5 6
|
eqtri |
⊢ ( ℕ0 ∖ ( bits ‘ 0 ) ) = ℕ0 |
8 |
|
neg0 |
⊢ - 0 = 0 |
9 |
8
|
oveq1i |
⊢ ( - 0 − 1 ) = ( 0 − 1 ) |
10 |
|
df-neg |
⊢ - 1 = ( 0 − 1 ) |
11 |
9 10
|
eqtr4i |
⊢ ( - 0 − 1 ) = - 1 |
12 |
11
|
fveq2i |
⊢ ( bits ‘ ( - 0 − 1 ) ) = ( bits ‘ - 1 ) |
13 |
3 7 12
|
3eqtr3ri |
⊢ ( bits ‘ - 1 ) = ℕ0 |