Step |
Hyp |
Ref |
Expression |
1 |
|
mdetdiag.d |
⊢ 𝐷 = ( 𝑁 maDet 𝑅 ) |
2 |
|
mdetdiag.a |
⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) |
3 |
|
mdetdiag.b |
⊢ 𝐵 = ( Base ‘ 𝐴 ) |
4 |
|
eqid |
⊢ ( Base ‘ ( SymGrp ‘ 𝑁 ) ) = ( Base ‘ ( SymGrp ‘ 𝑁 ) ) |
5 |
|
eqid |
⊢ ( ℤRHom ‘ 𝑅 ) = ( ℤRHom ‘ 𝑅 ) |
6 |
|
eqid |
⊢ ( pmSgn ‘ 𝑁 ) = ( pmSgn ‘ 𝑁 ) |
7 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
8 |
|
eqid |
⊢ ( mulGrp ‘ 𝑅 ) = ( mulGrp ‘ 𝑅 ) |
9 |
1 2 3 4 5 6 7 8
|
mdetleib |
⊢ ( 𝑀 ∈ 𝐵 → ( 𝐷 ‘ 𝑀 ) = ( 𝑅 Σg ( 𝑝 ∈ ( Base ‘ ( SymGrp ‘ 𝑁 ) ) ↦ ( ( ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ 𝑁 ) ) ‘ 𝑝 ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑥 ∈ 𝑁 ↦ ( ( 𝑝 ‘ 𝑥 ) 𝑀 𝑥 ) ) ) ) ) ) ) |
10 |
9
|
3ad2ant3 |
⊢ ( ( 𝑅 ∈ CRing ∧ ( 𝑁 = { 𝐼 } ∧ 𝐼 ∈ 𝑉 ) ∧ 𝑀 ∈ 𝐵 ) → ( 𝐷 ‘ 𝑀 ) = ( 𝑅 Σg ( 𝑝 ∈ ( Base ‘ ( SymGrp ‘ 𝑁 ) ) ↦ ( ( ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ 𝑁 ) ) ‘ 𝑝 ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑥 ∈ 𝑁 ↦ ( ( 𝑝 ‘ 𝑥 ) 𝑀 𝑥 ) ) ) ) ) ) ) |
11 |
|
2fveq3 |
⊢ ( 𝑁 = { 𝐼 } → ( Base ‘ ( SymGrp ‘ 𝑁 ) ) = ( Base ‘ ( SymGrp ‘ { 𝐼 } ) ) ) |
12 |
11
|
adantr |
⊢ ( ( 𝑁 = { 𝐼 } ∧ 𝐼 ∈ 𝑉 ) → ( Base ‘ ( SymGrp ‘ 𝑁 ) ) = ( Base ‘ ( SymGrp ‘ { 𝐼 } ) ) ) |
13 |
12
|
3ad2ant2 |
⊢ ( ( 𝑅 ∈ CRing ∧ ( 𝑁 = { 𝐼 } ∧ 𝐼 ∈ 𝑉 ) ∧ 𝑀 ∈ 𝐵 ) → ( Base ‘ ( SymGrp ‘ 𝑁 ) ) = ( Base ‘ ( SymGrp ‘ { 𝐼 } ) ) ) |
14 |
|
simp2r |
⊢ ( ( 𝑅 ∈ CRing ∧ ( 𝑁 = { 𝐼 } ∧ 𝐼 ∈ 𝑉 ) ∧ 𝑀 ∈ 𝐵 ) → 𝐼 ∈ 𝑉 ) |
15 |
|
eqid |
⊢ ( SymGrp ‘ { 𝐼 } ) = ( SymGrp ‘ { 𝐼 } ) |
16 |
|
eqid |
⊢ ( Base ‘ ( SymGrp ‘ { 𝐼 } ) ) = ( Base ‘ ( SymGrp ‘ { 𝐼 } ) ) |
17 |
|
eqid |
⊢ { 𝐼 } = { 𝐼 } |
18 |
15 16 17
|
symg1bas |
⊢ ( 𝐼 ∈ 𝑉 → ( Base ‘ ( SymGrp ‘ { 𝐼 } ) ) = { { 〈 𝐼 , 𝐼 〉 } } ) |
19 |
14 18
|
syl |
⊢ ( ( 𝑅 ∈ CRing ∧ ( 𝑁 = { 𝐼 } ∧ 𝐼 ∈ 𝑉 ) ∧ 𝑀 ∈ 𝐵 ) → ( Base ‘ ( SymGrp ‘ { 𝐼 } ) ) = { { 〈 𝐼 , 𝐼 〉 } } ) |
20 |
13 19
|
eqtrd |
⊢ ( ( 𝑅 ∈ CRing ∧ ( 𝑁 = { 𝐼 } ∧ 𝐼 ∈ 𝑉 ) ∧ 𝑀 ∈ 𝐵 ) → ( Base ‘ ( SymGrp ‘ 𝑁 ) ) = { { 〈 𝐼 , 𝐼 〉 } } ) |
21 |
20
|
mpteq1d |
⊢ ( ( 𝑅 ∈ CRing ∧ ( 𝑁 = { 𝐼 } ∧ 𝐼 ∈ 𝑉 ) ∧ 𝑀 ∈ 𝐵 ) → ( 𝑝 ∈ ( Base ‘ ( SymGrp ‘ 𝑁 ) ) ↦ ( ( ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ 𝑁 ) ) ‘ 𝑝 ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑥 ∈ 𝑁 ↦ ( ( 𝑝 ‘ 𝑥 ) 𝑀 𝑥 ) ) ) ) ) = ( 𝑝 ∈ { { 〈 𝐼 , 𝐼 〉 } } ↦ ( ( ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ 𝑁 ) ) ‘ 𝑝 ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑥 ∈ 𝑁 ↦ ( ( 𝑝 ‘ 𝑥 ) 𝑀 𝑥 ) ) ) ) ) ) |
22 |
|
snex |
⊢ { 〈 𝐼 , 𝐼 〉 } ∈ V |
23 |
22
|
a1i |
⊢ ( ( 𝑅 ∈ CRing ∧ ( 𝑁 = { 𝐼 } ∧ 𝐼 ∈ 𝑉 ) ∧ 𝑀 ∈ 𝐵 ) → { 〈 𝐼 , 𝐼 〉 } ∈ V ) |
24 |
|
ovex |
⊢ ( ( ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ 𝑁 ) ) ‘ { 〈 𝐼 , 𝐼 〉 } ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑥 ∈ 𝑁 ↦ ( ( { 〈 𝐼 , 𝐼 〉 } ‘ 𝑥 ) 𝑀 𝑥 ) ) ) ) ∈ V |
25 |
|
fveq2 |
⊢ ( 𝑝 = { 〈 𝐼 , 𝐼 〉 } → ( ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ 𝑁 ) ) ‘ 𝑝 ) = ( ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ 𝑁 ) ) ‘ { 〈 𝐼 , 𝐼 〉 } ) ) |
26 |
|
fveq1 |
⊢ ( 𝑝 = { 〈 𝐼 , 𝐼 〉 } → ( 𝑝 ‘ 𝑥 ) = ( { 〈 𝐼 , 𝐼 〉 } ‘ 𝑥 ) ) |
27 |
26
|
oveq1d |
⊢ ( 𝑝 = { 〈 𝐼 , 𝐼 〉 } → ( ( 𝑝 ‘ 𝑥 ) 𝑀 𝑥 ) = ( ( { 〈 𝐼 , 𝐼 〉 } ‘ 𝑥 ) 𝑀 𝑥 ) ) |
28 |
27
|
mpteq2dv |
⊢ ( 𝑝 = { 〈 𝐼 , 𝐼 〉 } → ( 𝑥 ∈ 𝑁 ↦ ( ( 𝑝 ‘ 𝑥 ) 𝑀 𝑥 ) ) = ( 𝑥 ∈ 𝑁 ↦ ( ( { 〈 𝐼 , 𝐼 〉 } ‘ 𝑥 ) 𝑀 𝑥 ) ) ) |
29 |
28
|
oveq2d |
⊢ ( 𝑝 = { 〈 𝐼 , 𝐼 〉 } → ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑥 ∈ 𝑁 ↦ ( ( 𝑝 ‘ 𝑥 ) 𝑀 𝑥 ) ) ) = ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑥 ∈ 𝑁 ↦ ( ( { 〈 𝐼 , 𝐼 〉 } ‘ 𝑥 ) 𝑀 𝑥 ) ) ) ) |
30 |
25 29
|
oveq12d |
⊢ ( 𝑝 = { 〈 𝐼 , 𝐼 〉 } → ( ( ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ 𝑁 ) ) ‘ 𝑝 ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑥 ∈ 𝑁 ↦ ( ( 𝑝 ‘ 𝑥 ) 𝑀 𝑥 ) ) ) ) = ( ( ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ 𝑁 ) ) ‘ { 〈 𝐼 , 𝐼 〉 } ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑥 ∈ 𝑁 ↦ ( ( { 〈 𝐼 , 𝐼 〉 } ‘ 𝑥 ) 𝑀 𝑥 ) ) ) ) ) |
31 |
30
|
fmptsng |
⊢ ( ( { 〈 𝐼 , 𝐼 〉 } ∈ V ∧ ( ( ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ 𝑁 ) ) ‘ { 〈 𝐼 , 𝐼 〉 } ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑥 ∈ 𝑁 ↦ ( ( { 〈 𝐼 , 𝐼 〉 } ‘ 𝑥 ) 𝑀 𝑥 ) ) ) ) ∈ V ) → { 〈 { 〈 𝐼 , 𝐼 〉 } , ( ( ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ 𝑁 ) ) ‘ { 〈 𝐼 , 𝐼 〉 } ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑥 ∈ 𝑁 ↦ ( ( { 〈 𝐼 , 𝐼 〉 } ‘ 𝑥 ) 𝑀 𝑥 ) ) ) ) 〉 } = ( 𝑝 ∈ { { 〈 𝐼 , 𝐼 〉 } } ↦ ( ( ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ 𝑁 ) ) ‘ 𝑝 ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑥 ∈ 𝑁 ↦ ( ( 𝑝 ‘ 𝑥 ) 𝑀 𝑥 ) ) ) ) ) ) |
32 |
31
|
eqcomd |
⊢ ( ( { 〈 𝐼 , 𝐼 〉 } ∈ V ∧ ( ( ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ 𝑁 ) ) ‘ { 〈 𝐼 , 𝐼 〉 } ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑥 ∈ 𝑁 ↦ ( ( { 〈 𝐼 , 𝐼 〉 } ‘ 𝑥 ) 𝑀 𝑥 ) ) ) ) ∈ V ) → ( 𝑝 ∈ { { 〈 𝐼 , 𝐼 〉 } } ↦ ( ( ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ 𝑁 ) ) ‘ 𝑝 ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑥 ∈ 𝑁 ↦ ( ( 𝑝 ‘ 𝑥 ) 𝑀 𝑥 ) ) ) ) ) = { 〈 { 〈 𝐼 , 𝐼 〉 } , ( ( ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ 𝑁 ) ) ‘ { 〈 𝐼 , 𝐼 〉 } ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑥 ∈ 𝑁 ↦ ( ( { 〈 𝐼 , 𝐼 〉 } ‘ 𝑥 ) 𝑀 𝑥 ) ) ) ) 〉 } ) |
33 |
23 24 32
|
sylancl |
⊢ ( ( 𝑅 ∈ CRing ∧ ( 𝑁 = { 𝐼 } ∧ 𝐼 ∈ 𝑉 ) ∧ 𝑀 ∈ 𝐵 ) → ( 𝑝 ∈ { { 〈 𝐼 , 𝐼 〉 } } ↦ ( ( ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ 𝑁 ) ) ‘ 𝑝 ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑥 ∈ 𝑁 ↦ ( ( 𝑝 ‘ 𝑥 ) 𝑀 𝑥 ) ) ) ) ) = { 〈 { 〈 𝐼 , 𝐼 〉 } , ( ( ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ 𝑁 ) ) ‘ { 〈 𝐼 , 𝐼 〉 } ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑥 ∈ 𝑁 ↦ ( ( { 〈 𝐼 , 𝐼 〉 } ‘ 𝑥 ) 𝑀 𝑥 ) ) ) ) 〉 } ) |
34 |
|
eqid |
⊢ ( SymGrp ‘ 𝑁 ) = ( SymGrp ‘ 𝑁 ) |
35 |
|
eqid |
⊢ { 𝑏 ∈ ( Base ‘ ( SymGrp ‘ 𝑁 ) ) ∣ dom ( 𝑏 ∖ I ) ∈ Fin } = { 𝑏 ∈ ( Base ‘ ( SymGrp ‘ 𝑁 ) ) ∣ dom ( 𝑏 ∖ I ) ∈ Fin } |
36 |
34 4 35 6
|
psgnfn |
⊢ ( pmSgn ‘ 𝑁 ) Fn { 𝑏 ∈ ( Base ‘ ( SymGrp ‘ 𝑁 ) ) ∣ dom ( 𝑏 ∖ I ) ∈ Fin } |
37 |
18
|
adantl |
⊢ ( ( 𝑁 = { 𝐼 } ∧ 𝐼 ∈ 𝑉 ) → ( Base ‘ ( SymGrp ‘ { 𝐼 } ) ) = { { 〈 𝐼 , 𝐼 〉 } } ) |
38 |
12 37
|
eqtrd |
⊢ ( ( 𝑁 = { 𝐼 } ∧ 𝐼 ∈ 𝑉 ) → ( Base ‘ ( SymGrp ‘ 𝑁 ) ) = { { 〈 𝐼 , 𝐼 〉 } } ) |
39 |
38
|
3ad2ant2 |
⊢ ( ( 𝑅 ∈ CRing ∧ ( 𝑁 = { 𝐼 } ∧ 𝐼 ∈ 𝑉 ) ∧ 𝑀 ∈ 𝐵 ) → ( Base ‘ ( SymGrp ‘ 𝑁 ) ) = { { 〈 𝐼 , 𝐼 〉 } } ) |
40 |
|
rabeq |
⊢ ( ( Base ‘ ( SymGrp ‘ 𝑁 ) ) = { { 〈 𝐼 , 𝐼 〉 } } → { 𝑏 ∈ ( Base ‘ ( SymGrp ‘ 𝑁 ) ) ∣ dom ( 𝑏 ∖ I ) ∈ Fin } = { 𝑏 ∈ { { 〈 𝐼 , 𝐼 〉 } } ∣ dom ( 𝑏 ∖ I ) ∈ Fin } ) |
41 |
39 40
|
syl |
⊢ ( ( 𝑅 ∈ CRing ∧ ( 𝑁 = { 𝐼 } ∧ 𝐼 ∈ 𝑉 ) ∧ 𝑀 ∈ 𝐵 ) → { 𝑏 ∈ ( Base ‘ ( SymGrp ‘ 𝑁 ) ) ∣ dom ( 𝑏 ∖ I ) ∈ Fin } = { 𝑏 ∈ { { 〈 𝐼 , 𝐼 〉 } } ∣ dom ( 𝑏 ∖ I ) ∈ Fin } ) |
42 |
|
difeq1 |
⊢ ( 𝑏 = { 〈 𝐼 , 𝐼 〉 } → ( 𝑏 ∖ I ) = ( { 〈 𝐼 , 𝐼 〉 } ∖ I ) ) |
43 |
42
|
dmeqd |
⊢ ( 𝑏 = { 〈 𝐼 , 𝐼 〉 } → dom ( 𝑏 ∖ I ) = dom ( { 〈 𝐼 , 𝐼 〉 } ∖ I ) ) |
44 |
43
|
eleq1d |
⊢ ( 𝑏 = { 〈 𝐼 , 𝐼 〉 } → ( dom ( 𝑏 ∖ I ) ∈ Fin ↔ dom ( { 〈 𝐼 , 𝐼 〉 } ∖ I ) ∈ Fin ) ) |
45 |
44
|
rabsnif |
⊢ { 𝑏 ∈ { { 〈 𝐼 , 𝐼 〉 } } ∣ dom ( 𝑏 ∖ I ) ∈ Fin } = if ( dom ( { 〈 𝐼 , 𝐼 〉 } ∖ I ) ∈ Fin , { { 〈 𝐼 , 𝐼 〉 } } , ∅ ) |
46 |
45
|
a1i |
⊢ ( ( 𝑅 ∈ CRing ∧ ( 𝑁 = { 𝐼 } ∧ 𝐼 ∈ 𝑉 ) ∧ 𝑀 ∈ 𝐵 ) → { 𝑏 ∈ { { 〈 𝐼 , 𝐼 〉 } } ∣ dom ( 𝑏 ∖ I ) ∈ Fin } = if ( dom ( { 〈 𝐼 , 𝐼 〉 } ∖ I ) ∈ Fin , { { 〈 𝐼 , 𝐼 〉 } } , ∅ ) ) |
47 |
|
restidsing |
⊢ ( I ↾ { 𝐼 } ) = ( { 𝐼 } × { 𝐼 } ) |
48 |
|
xpsng |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝐼 ∈ 𝑉 ) → ( { 𝐼 } × { 𝐼 } ) = { 〈 𝐼 , 𝐼 〉 } ) |
49 |
48
|
anidms |
⊢ ( 𝐼 ∈ 𝑉 → ( { 𝐼 } × { 𝐼 } ) = { 〈 𝐼 , 𝐼 〉 } ) |
50 |
47 49
|
eqtr2id |
⊢ ( 𝐼 ∈ 𝑉 → { 〈 𝐼 , 𝐼 〉 } = ( I ↾ { 𝐼 } ) ) |
51 |
|
fnsng |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝐼 ∈ 𝑉 ) → { 〈 𝐼 , 𝐼 〉 } Fn { 𝐼 } ) |
52 |
51
|
anidms |
⊢ ( 𝐼 ∈ 𝑉 → { 〈 𝐼 , 𝐼 〉 } Fn { 𝐼 } ) |
53 |
|
fnnfpeq0 |
⊢ ( { 〈 𝐼 , 𝐼 〉 } Fn { 𝐼 } → ( dom ( { 〈 𝐼 , 𝐼 〉 } ∖ I ) = ∅ ↔ { 〈 𝐼 , 𝐼 〉 } = ( I ↾ { 𝐼 } ) ) ) |
54 |
52 53
|
syl |
⊢ ( 𝐼 ∈ 𝑉 → ( dom ( { 〈 𝐼 , 𝐼 〉 } ∖ I ) = ∅ ↔ { 〈 𝐼 , 𝐼 〉 } = ( I ↾ { 𝐼 } ) ) ) |
55 |
50 54
|
mpbird |
⊢ ( 𝐼 ∈ 𝑉 → dom ( { 〈 𝐼 , 𝐼 〉 } ∖ I ) = ∅ ) |
56 |
|
0fin |
⊢ ∅ ∈ Fin |
57 |
55 56
|
eqeltrdi |
⊢ ( 𝐼 ∈ 𝑉 → dom ( { 〈 𝐼 , 𝐼 〉 } ∖ I ) ∈ Fin ) |
58 |
57
|
adantl |
⊢ ( ( 𝑁 = { 𝐼 } ∧ 𝐼 ∈ 𝑉 ) → dom ( { 〈 𝐼 , 𝐼 〉 } ∖ I ) ∈ Fin ) |
59 |
58
|
3ad2ant2 |
⊢ ( ( 𝑅 ∈ CRing ∧ ( 𝑁 = { 𝐼 } ∧ 𝐼 ∈ 𝑉 ) ∧ 𝑀 ∈ 𝐵 ) → dom ( { 〈 𝐼 , 𝐼 〉 } ∖ I ) ∈ Fin ) |
60 |
59
|
iftrued |
⊢ ( ( 𝑅 ∈ CRing ∧ ( 𝑁 = { 𝐼 } ∧ 𝐼 ∈ 𝑉 ) ∧ 𝑀 ∈ 𝐵 ) → if ( dom ( { 〈 𝐼 , 𝐼 〉 } ∖ I ) ∈ Fin , { { 〈 𝐼 , 𝐼 〉 } } , ∅ ) = { { 〈 𝐼 , 𝐼 〉 } } ) |
61 |
41 46 60
|
3eqtrrd |
⊢ ( ( 𝑅 ∈ CRing ∧ ( 𝑁 = { 𝐼 } ∧ 𝐼 ∈ 𝑉 ) ∧ 𝑀 ∈ 𝐵 ) → { { 〈 𝐼 , 𝐼 〉 } } = { 𝑏 ∈ ( Base ‘ ( SymGrp ‘ 𝑁 ) ) ∣ dom ( 𝑏 ∖ I ) ∈ Fin } ) |
62 |
61
|
fneq2d |
⊢ ( ( 𝑅 ∈ CRing ∧ ( 𝑁 = { 𝐼 } ∧ 𝐼 ∈ 𝑉 ) ∧ 𝑀 ∈ 𝐵 ) → ( ( pmSgn ‘ 𝑁 ) Fn { { 〈 𝐼 , 𝐼 〉 } } ↔ ( pmSgn ‘ 𝑁 ) Fn { 𝑏 ∈ ( Base ‘ ( SymGrp ‘ 𝑁 ) ) ∣ dom ( 𝑏 ∖ I ) ∈ Fin } ) ) |
63 |
36 62
|
mpbiri |
⊢ ( ( 𝑅 ∈ CRing ∧ ( 𝑁 = { 𝐼 } ∧ 𝐼 ∈ 𝑉 ) ∧ 𝑀 ∈ 𝐵 ) → ( pmSgn ‘ 𝑁 ) Fn { { 〈 𝐼 , 𝐼 〉 } } ) |
64 |
22
|
snid |
⊢ { 〈 𝐼 , 𝐼 〉 } ∈ { { 〈 𝐼 , 𝐼 〉 } } |
65 |
|
fvco2 |
⊢ ( ( ( pmSgn ‘ 𝑁 ) Fn { { 〈 𝐼 , 𝐼 〉 } } ∧ { 〈 𝐼 , 𝐼 〉 } ∈ { { 〈 𝐼 , 𝐼 〉 } } ) → ( ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ 𝑁 ) ) ‘ { 〈 𝐼 , 𝐼 〉 } ) = ( ( ℤRHom ‘ 𝑅 ) ‘ ( ( pmSgn ‘ 𝑁 ) ‘ { 〈 𝐼 , 𝐼 〉 } ) ) ) |
66 |
63 64 65
|
sylancl |
⊢ ( ( 𝑅 ∈ CRing ∧ ( 𝑁 = { 𝐼 } ∧ 𝐼 ∈ 𝑉 ) ∧ 𝑀 ∈ 𝐵 ) → ( ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ 𝑁 ) ) ‘ { 〈 𝐼 , 𝐼 〉 } ) = ( ( ℤRHom ‘ 𝑅 ) ‘ ( ( pmSgn ‘ 𝑁 ) ‘ { 〈 𝐼 , 𝐼 〉 } ) ) ) |
67 |
|
fveq2 |
⊢ ( 𝑁 = { 𝐼 } → ( pmSgn ‘ 𝑁 ) = ( pmSgn ‘ { 𝐼 } ) ) |
68 |
67
|
adantr |
⊢ ( ( 𝑁 = { 𝐼 } ∧ 𝐼 ∈ 𝑉 ) → ( pmSgn ‘ 𝑁 ) = ( pmSgn ‘ { 𝐼 } ) ) |
69 |
68
|
3ad2ant2 |
⊢ ( ( 𝑅 ∈ CRing ∧ ( 𝑁 = { 𝐼 } ∧ 𝐼 ∈ 𝑉 ) ∧ 𝑀 ∈ 𝐵 ) → ( pmSgn ‘ 𝑁 ) = ( pmSgn ‘ { 𝐼 } ) ) |
70 |
69
|
fveq1d |
⊢ ( ( 𝑅 ∈ CRing ∧ ( 𝑁 = { 𝐼 } ∧ 𝐼 ∈ 𝑉 ) ∧ 𝑀 ∈ 𝐵 ) → ( ( pmSgn ‘ 𝑁 ) ‘ { 〈 𝐼 , 𝐼 〉 } ) = ( ( pmSgn ‘ { 𝐼 } ) ‘ { 〈 𝐼 , 𝐼 〉 } ) ) |
71 |
|
snidg |
⊢ ( { 〈 𝐼 , 𝐼 〉 } ∈ V → { 〈 𝐼 , 𝐼 〉 } ∈ { { 〈 𝐼 , 𝐼 〉 } } ) |
72 |
22 71
|
mp1i |
⊢ ( 𝐼 ∈ 𝑉 → { 〈 𝐼 , 𝐼 〉 } ∈ { { 〈 𝐼 , 𝐼 〉 } } ) |
73 |
72 18
|
eleqtrrd |
⊢ ( 𝐼 ∈ 𝑉 → { 〈 𝐼 , 𝐼 〉 } ∈ ( Base ‘ ( SymGrp ‘ { 𝐼 } ) ) ) |
74 |
73
|
ancli |
⊢ ( 𝐼 ∈ 𝑉 → ( 𝐼 ∈ 𝑉 ∧ { 〈 𝐼 , 𝐼 〉 } ∈ ( Base ‘ ( SymGrp ‘ { 𝐼 } ) ) ) ) |
75 |
74
|
adantl |
⊢ ( ( 𝑁 = { 𝐼 } ∧ 𝐼 ∈ 𝑉 ) → ( 𝐼 ∈ 𝑉 ∧ { 〈 𝐼 , 𝐼 〉 } ∈ ( Base ‘ ( SymGrp ‘ { 𝐼 } ) ) ) ) |
76 |
75
|
3ad2ant2 |
⊢ ( ( 𝑅 ∈ CRing ∧ ( 𝑁 = { 𝐼 } ∧ 𝐼 ∈ 𝑉 ) ∧ 𝑀 ∈ 𝐵 ) → ( 𝐼 ∈ 𝑉 ∧ { 〈 𝐼 , 𝐼 〉 } ∈ ( Base ‘ ( SymGrp ‘ { 𝐼 } ) ) ) ) |
77 |
|
eqid |
⊢ ( pmSgn ‘ { 𝐼 } ) = ( pmSgn ‘ { 𝐼 } ) |
78 |
17 15 16 77
|
psgnsn |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ { 〈 𝐼 , 𝐼 〉 } ∈ ( Base ‘ ( SymGrp ‘ { 𝐼 } ) ) ) → ( ( pmSgn ‘ { 𝐼 } ) ‘ { 〈 𝐼 , 𝐼 〉 } ) = 1 ) |
79 |
76 78
|
syl |
⊢ ( ( 𝑅 ∈ CRing ∧ ( 𝑁 = { 𝐼 } ∧ 𝐼 ∈ 𝑉 ) ∧ 𝑀 ∈ 𝐵 ) → ( ( pmSgn ‘ { 𝐼 } ) ‘ { 〈 𝐼 , 𝐼 〉 } ) = 1 ) |
80 |
70 79
|
eqtrd |
⊢ ( ( 𝑅 ∈ CRing ∧ ( 𝑁 = { 𝐼 } ∧ 𝐼 ∈ 𝑉 ) ∧ 𝑀 ∈ 𝐵 ) → ( ( pmSgn ‘ 𝑁 ) ‘ { 〈 𝐼 , 𝐼 〉 } ) = 1 ) |
81 |
80
|
fveq2d |
⊢ ( ( 𝑅 ∈ CRing ∧ ( 𝑁 = { 𝐼 } ∧ 𝐼 ∈ 𝑉 ) ∧ 𝑀 ∈ 𝐵 ) → ( ( ℤRHom ‘ 𝑅 ) ‘ ( ( pmSgn ‘ 𝑁 ) ‘ { 〈 𝐼 , 𝐼 〉 } ) ) = ( ( ℤRHom ‘ 𝑅 ) ‘ 1 ) ) |
82 |
|
crngring |
⊢ ( 𝑅 ∈ CRing → 𝑅 ∈ Ring ) |
83 |
82
|
3ad2ant1 |
⊢ ( ( 𝑅 ∈ CRing ∧ ( 𝑁 = { 𝐼 } ∧ 𝐼 ∈ 𝑉 ) ∧ 𝑀 ∈ 𝐵 ) → 𝑅 ∈ Ring ) |
84 |
|
eqid |
⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) |
85 |
5 84
|
zrh1 |
⊢ ( 𝑅 ∈ Ring → ( ( ℤRHom ‘ 𝑅 ) ‘ 1 ) = ( 1r ‘ 𝑅 ) ) |
86 |
83 85
|
syl |
⊢ ( ( 𝑅 ∈ CRing ∧ ( 𝑁 = { 𝐼 } ∧ 𝐼 ∈ 𝑉 ) ∧ 𝑀 ∈ 𝐵 ) → ( ( ℤRHom ‘ 𝑅 ) ‘ 1 ) = ( 1r ‘ 𝑅 ) ) |
87 |
66 81 86
|
3eqtrd |
⊢ ( ( 𝑅 ∈ CRing ∧ ( 𝑁 = { 𝐼 } ∧ 𝐼 ∈ 𝑉 ) ∧ 𝑀 ∈ 𝐵 ) → ( ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ 𝑁 ) ) ‘ { 〈 𝐼 , 𝐼 〉 } ) = ( 1r ‘ 𝑅 ) ) |
88 |
|
simp2l |
⊢ ( ( 𝑅 ∈ CRing ∧ ( 𝑁 = { 𝐼 } ∧ 𝐼 ∈ 𝑉 ) ∧ 𝑀 ∈ 𝐵 ) → 𝑁 = { 𝐼 } ) |
89 |
88
|
mpteq1d |
⊢ ( ( 𝑅 ∈ CRing ∧ ( 𝑁 = { 𝐼 } ∧ 𝐼 ∈ 𝑉 ) ∧ 𝑀 ∈ 𝐵 ) → ( 𝑥 ∈ 𝑁 ↦ ( ( { 〈 𝐼 , 𝐼 〉 } ‘ 𝑥 ) 𝑀 𝑥 ) ) = ( 𝑥 ∈ { 𝐼 } ↦ ( ( { 〈 𝐼 , 𝐼 〉 } ‘ 𝑥 ) 𝑀 𝑥 ) ) ) |
90 |
89
|
oveq2d |
⊢ ( ( 𝑅 ∈ CRing ∧ ( 𝑁 = { 𝐼 } ∧ 𝐼 ∈ 𝑉 ) ∧ 𝑀 ∈ 𝐵 ) → ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑥 ∈ 𝑁 ↦ ( ( { 〈 𝐼 , 𝐼 〉 } ‘ 𝑥 ) 𝑀 𝑥 ) ) ) = ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑥 ∈ { 𝐼 } ↦ ( ( { 〈 𝐼 , 𝐼 〉 } ‘ 𝑥 ) 𝑀 𝑥 ) ) ) ) |
91 |
8
|
ringmgp |
⊢ ( 𝑅 ∈ Ring → ( mulGrp ‘ 𝑅 ) ∈ Mnd ) |
92 |
82 91
|
syl |
⊢ ( 𝑅 ∈ CRing → ( mulGrp ‘ 𝑅 ) ∈ Mnd ) |
93 |
92
|
3ad2ant1 |
⊢ ( ( 𝑅 ∈ CRing ∧ ( 𝑁 = { 𝐼 } ∧ 𝐼 ∈ 𝑉 ) ∧ 𝑀 ∈ 𝐵 ) → ( mulGrp ‘ 𝑅 ) ∈ Mnd ) |
94 |
|
snidg |
⊢ ( 𝐼 ∈ 𝑉 → 𝐼 ∈ { 𝐼 } ) |
95 |
94
|
adantl |
⊢ ( ( 𝑁 = { 𝐼 } ∧ 𝐼 ∈ 𝑉 ) → 𝐼 ∈ { 𝐼 } ) |
96 |
|
eleq2 |
⊢ ( 𝑁 = { 𝐼 } → ( 𝐼 ∈ 𝑁 ↔ 𝐼 ∈ { 𝐼 } ) ) |
97 |
96
|
adantr |
⊢ ( ( 𝑁 = { 𝐼 } ∧ 𝐼 ∈ 𝑉 ) → ( 𝐼 ∈ 𝑁 ↔ 𝐼 ∈ { 𝐼 } ) ) |
98 |
95 97
|
mpbird |
⊢ ( ( 𝑁 = { 𝐼 } ∧ 𝐼 ∈ 𝑉 ) → 𝐼 ∈ 𝑁 ) |
99 |
3
|
eleq2i |
⊢ ( 𝑀 ∈ 𝐵 ↔ 𝑀 ∈ ( Base ‘ 𝐴 ) ) |
100 |
99
|
biimpi |
⊢ ( 𝑀 ∈ 𝐵 → 𝑀 ∈ ( Base ‘ 𝐴 ) ) |
101 |
|
simpl |
⊢ ( ( 𝐼 ∈ 𝑁 ∧ 𝑀 ∈ ( Base ‘ 𝐴 ) ) → 𝐼 ∈ 𝑁 ) |
102 |
|
simpr |
⊢ ( ( 𝐼 ∈ 𝑁 ∧ 𝑀 ∈ ( Base ‘ 𝐴 ) ) → 𝑀 ∈ ( Base ‘ 𝐴 ) ) |
103 |
101 101 102
|
3jca |
⊢ ( ( 𝐼 ∈ 𝑁 ∧ 𝑀 ∈ ( Base ‘ 𝐴 ) ) → ( 𝐼 ∈ 𝑁 ∧ 𝐼 ∈ 𝑁 ∧ 𝑀 ∈ ( Base ‘ 𝐴 ) ) ) |
104 |
98 100 103
|
syl2an |
⊢ ( ( ( 𝑁 = { 𝐼 } ∧ 𝐼 ∈ 𝑉 ) ∧ 𝑀 ∈ 𝐵 ) → ( 𝐼 ∈ 𝑁 ∧ 𝐼 ∈ 𝑁 ∧ 𝑀 ∈ ( Base ‘ 𝐴 ) ) ) |
105 |
104
|
3adant1 |
⊢ ( ( 𝑅 ∈ CRing ∧ ( 𝑁 = { 𝐼 } ∧ 𝐼 ∈ 𝑉 ) ∧ 𝑀 ∈ 𝐵 ) → ( 𝐼 ∈ 𝑁 ∧ 𝐼 ∈ 𝑁 ∧ 𝑀 ∈ ( Base ‘ 𝐴 ) ) ) |
106 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
107 |
2 106
|
matecl |
⊢ ( ( 𝐼 ∈ 𝑁 ∧ 𝐼 ∈ 𝑁 ∧ 𝑀 ∈ ( Base ‘ 𝐴 ) ) → ( 𝐼 𝑀 𝐼 ) ∈ ( Base ‘ 𝑅 ) ) |
108 |
105 107
|
syl |
⊢ ( ( 𝑅 ∈ CRing ∧ ( 𝑁 = { 𝐼 } ∧ 𝐼 ∈ 𝑉 ) ∧ 𝑀 ∈ 𝐵 ) → ( 𝐼 𝑀 𝐼 ) ∈ ( Base ‘ 𝑅 ) ) |
109 |
8 106
|
mgpbas |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ ( mulGrp ‘ 𝑅 ) ) |
110 |
108 109
|
eleqtrdi |
⊢ ( ( 𝑅 ∈ CRing ∧ ( 𝑁 = { 𝐼 } ∧ 𝐼 ∈ 𝑉 ) ∧ 𝑀 ∈ 𝐵 ) → ( 𝐼 𝑀 𝐼 ) ∈ ( Base ‘ ( mulGrp ‘ 𝑅 ) ) ) |
111 |
|
eqid |
⊢ ( Base ‘ ( mulGrp ‘ 𝑅 ) ) = ( Base ‘ ( mulGrp ‘ 𝑅 ) ) |
112 |
|
fveq2 |
⊢ ( 𝑥 = 𝐼 → ( { 〈 𝐼 , 𝐼 〉 } ‘ 𝑥 ) = ( { 〈 𝐼 , 𝐼 〉 } ‘ 𝐼 ) ) |
113 |
|
eqvisset |
⊢ ( 𝑥 = 𝐼 → 𝐼 ∈ V ) |
114 |
|
fvsng |
⊢ ( ( 𝐼 ∈ V ∧ 𝐼 ∈ V ) → ( { 〈 𝐼 , 𝐼 〉 } ‘ 𝐼 ) = 𝐼 ) |
115 |
113 113 114
|
syl2anc |
⊢ ( 𝑥 = 𝐼 → ( { 〈 𝐼 , 𝐼 〉 } ‘ 𝐼 ) = 𝐼 ) |
116 |
112 115
|
eqtrd |
⊢ ( 𝑥 = 𝐼 → ( { 〈 𝐼 , 𝐼 〉 } ‘ 𝑥 ) = 𝐼 ) |
117 |
|
id |
⊢ ( 𝑥 = 𝐼 → 𝑥 = 𝐼 ) |
118 |
116 117
|
oveq12d |
⊢ ( 𝑥 = 𝐼 → ( ( { 〈 𝐼 , 𝐼 〉 } ‘ 𝑥 ) 𝑀 𝑥 ) = ( 𝐼 𝑀 𝐼 ) ) |
119 |
111 118
|
gsumsn |
⊢ ( ( ( mulGrp ‘ 𝑅 ) ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ ( 𝐼 𝑀 𝐼 ) ∈ ( Base ‘ ( mulGrp ‘ 𝑅 ) ) ) → ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑥 ∈ { 𝐼 } ↦ ( ( { 〈 𝐼 , 𝐼 〉 } ‘ 𝑥 ) 𝑀 𝑥 ) ) ) = ( 𝐼 𝑀 𝐼 ) ) |
120 |
93 14 110 119
|
syl3anc |
⊢ ( ( 𝑅 ∈ CRing ∧ ( 𝑁 = { 𝐼 } ∧ 𝐼 ∈ 𝑉 ) ∧ 𝑀 ∈ 𝐵 ) → ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑥 ∈ { 𝐼 } ↦ ( ( { 〈 𝐼 , 𝐼 〉 } ‘ 𝑥 ) 𝑀 𝑥 ) ) ) = ( 𝐼 𝑀 𝐼 ) ) |
121 |
90 120
|
eqtrd |
⊢ ( ( 𝑅 ∈ CRing ∧ ( 𝑁 = { 𝐼 } ∧ 𝐼 ∈ 𝑉 ) ∧ 𝑀 ∈ 𝐵 ) → ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑥 ∈ 𝑁 ↦ ( ( { 〈 𝐼 , 𝐼 〉 } ‘ 𝑥 ) 𝑀 𝑥 ) ) ) = ( 𝐼 𝑀 𝐼 ) ) |
122 |
87 121
|
oveq12d |
⊢ ( ( 𝑅 ∈ CRing ∧ ( 𝑁 = { 𝐼 } ∧ 𝐼 ∈ 𝑉 ) ∧ 𝑀 ∈ 𝐵 ) → ( ( ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ 𝑁 ) ) ‘ { 〈 𝐼 , 𝐼 〉 } ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑥 ∈ 𝑁 ↦ ( ( { 〈 𝐼 , 𝐼 〉 } ‘ 𝑥 ) 𝑀 𝑥 ) ) ) ) = ( ( 1r ‘ 𝑅 ) ( .r ‘ 𝑅 ) ( 𝐼 𝑀 𝐼 ) ) ) |
123 |
98
|
3ad2ant2 |
⊢ ( ( 𝑅 ∈ CRing ∧ ( 𝑁 = { 𝐼 } ∧ 𝐼 ∈ 𝑉 ) ∧ 𝑀 ∈ 𝐵 ) → 𝐼 ∈ 𝑁 ) |
124 |
100
|
3ad2ant3 |
⊢ ( ( 𝑅 ∈ CRing ∧ ( 𝑁 = { 𝐼 } ∧ 𝐼 ∈ 𝑉 ) ∧ 𝑀 ∈ 𝐵 ) → 𝑀 ∈ ( Base ‘ 𝐴 ) ) |
125 |
123 123 124 107
|
syl3anc |
⊢ ( ( 𝑅 ∈ CRing ∧ ( 𝑁 = { 𝐼 } ∧ 𝐼 ∈ 𝑉 ) ∧ 𝑀 ∈ 𝐵 ) → ( 𝐼 𝑀 𝐼 ) ∈ ( Base ‘ 𝑅 ) ) |
126 |
106 7 84
|
ringlidm |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝐼 𝑀 𝐼 ) ∈ ( Base ‘ 𝑅 ) ) → ( ( 1r ‘ 𝑅 ) ( .r ‘ 𝑅 ) ( 𝐼 𝑀 𝐼 ) ) = ( 𝐼 𝑀 𝐼 ) ) |
127 |
83 125 126
|
syl2anc |
⊢ ( ( 𝑅 ∈ CRing ∧ ( 𝑁 = { 𝐼 } ∧ 𝐼 ∈ 𝑉 ) ∧ 𝑀 ∈ 𝐵 ) → ( ( 1r ‘ 𝑅 ) ( .r ‘ 𝑅 ) ( 𝐼 𝑀 𝐼 ) ) = ( 𝐼 𝑀 𝐼 ) ) |
128 |
122 127
|
eqtrd |
⊢ ( ( 𝑅 ∈ CRing ∧ ( 𝑁 = { 𝐼 } ∧ 𝐼 ∈ 𝑉 ) ∧ 𝑀 ∈ 𝐵 ) → ( ( ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ 𝑁 ) ) ‘ { 〈 𝐼 , 𝐼 〉 } ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑥 ∈ 𝑁 ↦ ( ( { 〈 𝐼 , 𝐼 〉 } ‘ 𝑥 ) 𝑀 𝑥 ) ) ) ) = ( 𝐼 𝑀 𝐼 ) ) |
129 |
128
|
opeq2d |
⊢ ( ( 𝑅 ∈ CRing ∧ ( 𝑁 = { 𝐼 } ∧ 𝐼 ∈ 𝑉 ) ∧ 𝑀 ∈ 𝐵 ) → 〈 { 〈 𝐼 , 𝐼 〉 } , ( ( ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ 𝑁 ) ) ‘ { 〈 𝐼 , 𝐼 〉 } ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑥 ∈ 𝑁 ↦ ( ( { 〈 𝐼 , 𝐼 〉 } ‘ 𝑥 ) 𝑀 𝑥 ) ) ) ) 〉 = 〈 { 〈 𝐼 , 𝐼 〉 } , ( 𝐼 𝑀 𝐼 ) 〉 ) |
130 |
129
|
sneqd |
⊢ ( ( 𝑅 ∈ CRing ∧ ( 𝑁 = { 𝐼 } ∧ 𝐼 ∈ 𝑉 ) ∧ 𝑀 ∈ 𝐵 ) → { 〈 { 〈 𝐼 , 𝐼 〉 } , ( ( ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ 𝑁 ) ) ‘ { 〈 𝐼 , 𝐼 〉 } ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑥 ∈ 𝑁 ↦ ( ( { 〈 𝐼 , 𝐼 〉 } ‘ 𝑥 ) 𝑀 𝑥 ) ) ) ) 〉 } = { 〈 { 〈 𝐼 , 𝐼 〉 } , ( 𝐼 𝑀 𝐼 ) 〉 } ) |
131 |
|
ovex |
⊢ ( 𝐼 𝑀 𝐼 ) ∈ V |
132 |
|
eqidd |
⊢ ( 𝑦 = { 〈 𝐼 , 𝐼 〉 } → ( 𝐼 𝑀 𝐼 ) = ( 𝐼 𝑀 𝐼 ) ) |
133 |
132
|
fmptsng |
⊢ ( ( { 〈 𝐼 , 𝐼 〉 } ∈ V ∧ ( 𝐼 𝑀 𝐼 ) ∈ V ) → { 〈 { 〈 𝐼 , 𝐼 〉 } , ( 𝐼 𝑀 𝐼 ) 〉 } = ( 𝑦 ∈ { { 〈 𝐼 , 𝐼 〉 } } ↦ ( 𝐼 𝑀 𝐼 ) ) ) |
134 |
23 131 133
|
sylancl |
⊢ ( ( 𝑅 ∈ CRing ∧ ( 𝑁 = { 𝐼 } ∧ 𝐼 ∈ 𝑉 ) ∧ 𝑀 ∈ 𝐵 ) → { 〈 { 〈 𝐼 , 𝐼 〉 } , ( 𝐼 𝑀 𝐼 ) 〉 } = ( 𝑦 ∈ { { 〈 𝐼 , 𝐼 〉 } } ↦ ( 𝐼 𝑀 𝐼 ) ) ) |
135 |
130 134
|
eqtrd |
⊢ ( ( 𝑅 ∈ CRing ∧ ( 𝑁 = { 𝐼 } ∧ 𝐼 ∈ 𝑉 ) ∧ 𝑀 ∈ 𝐵 ) → { 〈 { 〈 𝐼 , 𝐼 〉 } , ( ( ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ 𝑁 ) ) ‘ { 〈 𝐼 , 𝐼 〉 } ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑥 ∈ 𝑁 ↦ ( ( { 〈 𝐼 , 𝐼 〉 } ‘ 𝑥 ) 𝑀 𝑥 ) ) ) ) 〉 } = ( 𝑦 ∈ { { 〈 𝐼 , 𝐼 〉 } } ↦ ( 𝐼 𝑀 𝐼 ) ) ) |
136 |
21 33 135
|
3eqtrd |
⊢ ( ( 𝑅 ∈ CRing ∧ ( 𝑁 = { 𝐼 } ∧ 𝐼 ∈ 𝑉 ) ∧ 𝑀 ∈ 𝐵 ) → ( 𝑝 ∈ ( Base ‘ ( SymGrp ‘ 𝑁 ) ) ↦ ( ( ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ 𝑁 ) ) ‘ 𝑝 ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑥 ∈ 𝑁 ↦ ( ( 𝑝 ‘ 𝑥 ) 𝑀 𝑥 ) ) ) ) ) = ( 𝑦 ∈ { { 〈 𝐼 , 𝐼 〉 } } ↦ ( 𝐼 𝑀 𝐼 ) ) ) |
137 |
136
|
oveq2d |
⊢ ( ( 𝑅 ∈ CRing ∧ ( 𝑁 = { 𝐼 } ∧ 𝐼 ∈ 𝑉 ) ∧ 𝑀 ∈ 𝐵 ) → ( 𝑅 Σg ( 𝑝 ∈ ( Base ‘ ( SymGrp ‘ 𝑁 ) ) ↦ ( ( ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ 𝑁 ) ) ‘ 𝑝 ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑥 ∈ 𝑁 ↦ ( ( 𝑝 ‘ 𝑥 ) 𝑀 𝑥 ) ) ) ) ) ) = ( 𝑅 Σg ( 𝑦 ∈ { { 〈 𝐼 , 𝐼 〉 } } ↦ ( 𝐼 𝑀 𝐼 ) ) ) ) |
138 |
|
ringmnd |
⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Mnd ) |
139 |
82 138
|
syl |
⊢ ( 𝑅 ∈ CRing → 𝑅 ∈ Mnd ) |
140 |
139
|
3ad2ant1 |
⊢ ( ( 𝑅 ∈ CRing ∧ ( 𝑁 = { 𝐼 } ∧ 𝐼 ∈ 𝑉 ) ∧ 𝑀 ∈ 𝐵 ) → 𝑅 ∈ Mnd ) |
141 |
106 132
|
gsumsn |
⊢ ( ( 𝑅 ∈ Mnd ∧ { 〈 𝐼 , 𝐼 〉 } ∈ V ∧ ( 𝐼 𝑀 𝐼 ) ∈ ( Base ‘ 𝑅 ) ) → ( 𝑅 Σg ( 𝑦 ∈ { { 〈 𝐼 , 𝐼 〉 } } ↦ ( 𝐼 𝑀 𝐼 ) ) ) = ( 𝐼 𝑀 𝐼 ) ) |
142 |
140 23 125 141
|
syl3anc |
⊢ ( ( 𝑅 ∈ CRing ∧ ( 𝑁 = { 𝐼 } ∧ 𝐼 ∈ 𝑉 ) ∧ 𝑀 ∈ 𝐵 ) → ( 𝑅 Σg ( 𝑦 ∈ { { 〈 𝐼 , 𝐼 〉 } } ↦ ( 𝐼 𝑀 𝐼 ) ) ) = ( 𝐼 𝑀 𝐼 ) ) |
143 |
10 137 142
|
3eqtrd |
⊢ ( ( 𝑅 ∈ CRing ∧ ( 𝑁 = { 𝐼 } ∧ 𝐼 ∈ 𝑉 ) ∧ 𝑀 ∈ 𝐵 ) → ( 𝐷 ‘ 𝑀 ) = ( 𝐼 𝑀 𝐼 ) ) |